Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33431650

RESUMO

The science around the use of masks by the public to impede COVID-19 transmission is advancing rapidly. In this narrative review, we develop an analytical framework to examine mask usage, synthesizing the relevant literature to inform multiple areas: population impact, transmission characteristics, source control, wearer protection, sociological considerations, and implementation considerations. A primary route of transmission of COVID-19 is via respiratory particles, and it is known to be transmissible from presymptomatic, paucisymptomatic, and asymptomatic individuals. Reducing disease spread requires two things: limiting contacts of infected individuals via physical distancing and other measures and reducing the transmission probability per contact. The preponderance of evidence indicates that mask wearing reduces transmissibility per contact by reducing transmission of infected respiratory particles in both laboratory and clinical contexts. Public mask wearing is most effective at reducing spread of the virus when compliance is high. Given the current shortages of medical masks, we recommend the adoption of public cloth mask wearing, as an effective form of source control, in conjunction with existing hygiene, distancing, and contact tracing strategies. Because many respiratory particles become smaller due to evaporation, we recommend increasing focus on a previously overlooked aspect of mask usage: mask wearing by infectious people ("source control") with benefits at the population level, rather than only mask wearing by susceptible people, such as health care workers, with focus on individual outcomes. We recommend that public officials and governments strongly encourage the use of widespread face masks in public, including the use of appropriate regulation.


Assuntos
COVID-19 , Busca de Comunicante , Máscaras , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos
3.
Indoor Air ; 32(8): e13070, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040283

RESUMO

The question of whether SARS-CoV-2 is mainly transmitted by droplets or aerosols has been highly controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, the dominant paradigm was that many diseases were carried by the air, often over long distances and in a phantasmagorical way. This miasmatic paradigm was challenged in the mid to late 19th century with the rise of germ theory, and as diseases such as cholera, puerperal fever, and malaria were found to actually transmit in other ways. Motivated by his views on the importance of contact/droplet infection, and the resistance he encountered from the remaining influence of miasma theory, prominent public health official Charles Chapin in 1910 helped initiate a successful paradigm shift, deeming airborne transmission most unlikely. This new paradigm became dominant. However, the lack of understanding of aerosols led to systematic errors in the interpretation of research evidence on transmission pathways. For the next five decades, airborne transmission was considered of negligible or minor importance for all major respiratory diseases, until a demonstration of airborne transmission of tuberculosis (which had been mistakenly thought to be transmitted by droplets) in 1962. The contact/droplet paradigm remained dominant, and only a few diseases were widely accepted as airborne before COVID-19: those that were clearly transmitted to people not in the same room. The acceleration of interdisciplinary research inspired by the COVID-19 pandemic has shown that airborne transmission is a major mode of transmission for this disease, and is likely to be significant for many respiratory infectious diseases.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Pandemias , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
5.
Science ; 373(6558)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446582

RESUMO

The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.


Assuntos
Microbiologia do Ar , COVID-19/transmissão , Infecções Respiratórias/transmissão , SARS-CoV-2 , Viroses/transmissão , Fenômenos Fisiológicos Virais , Aerossóis , COVID-19/virologia , Transmissão de Doença Infecciosa , Humanos , Viabilidade Microbiana , Tamanho da Partícula , Sistema Respiratório/virologia , Infecções Respiratórias/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Carga Viral , Viroses/virologia , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA