Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 606(7915): 785-790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705806

RESUMO

Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1-5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Obesidade , Fenilalanina , Condicionamento Físico Animal , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Fenilalanina/administração & dosagem , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Condicionamento Físico Animal/fisiologia
2.
Nat Commun ; 15(1): 6895, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134528

RESUMO

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating SLC17A1/3-dependent de-coupling of urine and plasma Lac-Phe pools. Together, these data establish SLC17A1/3 family members as the physiologic urine Lac-Phe transporters and uncover a biochemical pathway for the renal excretion of this signaling metabolite.


Assuntos
Rim , Camundongos Knockout , Animais , Humanos , Camundongos , Masculino , Rim/metabolismo , Eliminação Renal , Feminino , Lactatos/metabolismo , Lactatos/sangue , Lactatos/urina , Fenilalanina/metabolismo , Fenilalanina/urina , Fenilalanina/sangue , Camundongos Endogâmicos C57BL , Adulto , Células HEK293
3.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659895

RESUMO

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.

4.
bioRxiv ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39314488

RESUMO

ß-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids. This BHB-ylation reaction produces a family of endogenous ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. Administration of BHB-Phe, the most abundant BHB-amino acid, to obese mice activates neural populations in the hypothalamus and brainstem and suppresses feeding and body weight. Conversely, CNDP2-KO mice exhibit increased food intake and body weight upon ketosis stimuli. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, the metabolic pathways of BHB extend beyond primary metabolism and include secondary ketone metabolites linked to energy balance.

5.
Nat Metab ; 6(4): 659-669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499766

RESUMO

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.


Assuntos
Peso Corporal , Ingestão de Alimentos , Metformina , Metformina/farmacologia , Animais , Humanos , Peso Corporal/efeitos dos fármacos , Camundongos , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Dipeptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA