Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077134

RESUMO

Currently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain's resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase in the level of these neurotrophic factors in brain tissues using genetic engineering methods on the resistance of laboratory animals to hypoxia may pave the way for the future clinical use of neurotrophic factors BDNF and GDNF in the treatment of hypoxic damage. This study aimed to evaluate the antihypoxic and neuroprotective properties of BDNF and GDNF expression level increase using adeno-associated viral vectors in modeling hypoxia in vivo. To achieve overexpression of neurotrophic factors in the central nervous system's cells, viral constructs were injected into the brain ventricles of newborn male C57Bl6 (P0) mice. Acute hypobaric hypoxia was modeled on the 30th day after the injection of viral vectors. Survival, cognitive, and mnestic functions in the late post-hypoxic period were tested. Evaluation of growth and weight characteristics and the neurological status of animals showed that the overexpression of neurotrophic factors does not affect the development of mice. It was found that the use of adeno-associated viral vectors increased the survival rate of male mice under hypoxic conditions. The present study indicates that the neurotrophic factors' overexpression, induced by the specially developed viral constructs carrying the BDNF and GDNF genes, is a prospective neuroprotection method, increasing the survival rate of animals after hypoxic injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hipóxia/metabolismo , Neuroproteção , Animais , Encéfalo/metabolismo , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Estudos Prospectivos
2.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641360

RESUMO

Despite the significant relevance of photodynamic therapy (PDT) as an efficient strategy for primary and adjuvant anticancer treatment, several challenges compromise its efficiency. In order to develop an "ideal photosensitizer" and the requirements applied to photosensitizers for PDT, there is still a need for new photodynamic agents with improved photophysical and photobiological properties. In this study, we performed a detailed characterization of two tetracyanotetra(aryl)porphyrazine dyes with 4-biphenyl (pz II) and 4-diethylaminophenyl (pz IV) groups in the periphery of the porphyrazine macrocycle. Photophysical properties, namely, fluorescence quantum yield and lifetime of both photosensitizers, demonstrate extremely high dependence on the viscosity of the environment, which enables them to be used as viscosity sensors. PzII and pz IV easily enter cancer cells and efficiently induce cell death under light irradiation. Using fluorescence lifetime imaging microscopy, we demonstrated the possibility of assessing local intracellular viscosity and visualizing viscosity changes driven by PDT treatment with the compounds. Thus, pz II and pz IV combine the features of potent photodynamic agents and viscosity sensors. These data suggest that the unique properties of the compounds provide a tool for PDT dosimetry and tailoring the PDT treatment regimen to the individual characteristics of each patient.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Glioma/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Oxigênio Singlete/química , Animais , Carcinoma de Células Escamosas/patologia , Glioma/patologia , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Células Tumorais Cultivadas , Viscosidade
3.
Trends Cancer ; 10(1): 8-11, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37973489

RESUMO

Immunogenic cell death (ICD) arouses great interest in targeting glioma, the most common primary brain tumor, to achieve boosted immunotherapy. We discuss the unexpected findings on the induction of Th17 immunity by ICD and propose the best design for dendritic cell (DC)-based vaccines loaded with whole glioma lysates obtained after ICD inducers.


Assuntos
Antineoplásicos , Glioma , Humanos , Morte Celular Imunogênica , Glioma/terapia , Glioma/patologia , Antineoplásicos/farmacologia , Imunoterapia
4.
Methods Cell Biol ; 183: 203-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548413

RESUMO

The discovery of the concept of immunogenic cell death (ICD) is a cornerstone in the development of novel anti-cancer immunotherapeutic approaches. Induction of the ICD pathway by specific anti-cancer therapeutic regimens can eliminate cancer cells by directly killing them during therapy and by activation of strong and specific anti-cancer immunity, leading to a long-lasting immunological memory that prevents cancer recurrence. ICD encompasses different forms of regulated cell death and can be triggered by many anti-cancer treatment modalities, including photodynamic therapy (PDT). PDT is a multistep procedure involving the accumulation of a light-sensitive dye known as a photosensitizer (PS) in tumor cells, followed by its activation by irradiation with a light of an appropriate wavelength. In the presence of molecular oxygen, the irradiated PS leads to the generation of cytotoxic reactive oxygen species, which can lead to ICD induction in the cancer cells. Here, we first describe in vitro methods to help optimize the PDT procedure for a specific PS. We also provide a collection of protocols and techniques for assessing ICD in vitro, including analysis of the emission of damage associated molecular patterns (DAMPs), efferocytosis, and the maturation and activation state of antigen presenting cells. Next, we describe in detail protocols for diverse tumor mouse models for assessing and characterizing ICD in vivo, such as murine tumor vaccination models. Finally, as an immunotherapeutic vaccine, we suggest using either PDT-induced dead cancer cells, preferably undergoing ICD, or dendritic cells loaded with lysates of PDT-induced cancer cells in a syngeneic orthotopic glioma model. Overall, this methodological article provides a quantitative, comprehensive set of validated tools that can be successfully used, with some adaptations, to identify, optimize and validate novel PSs in vitro and in vivo for the efficient induction of ICD during photodynamic treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Camundongos , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Morte Celular , Vacinação , Linhagem Celular Tumoral
5.
Front Immunol ; 14: 1299064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274827

RESUMO

Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.


Assuntos
Glioma , Microambiente Tumoral , Humanos , Qualidade de Vida , Glioma/terapia , Sistema Nervoso Central , Imunoterapia
6.
Pharmaceutics ; 15(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37896190

RESUMO

Research in the past decade on immunogenic cell death (ICD) has shown that the immunogenicity of dying tumor cells is crucial for effective anticancer therapy. ICD induction leads to the emission of specific damage-associated molecular patterns (DAMPs), which act as danger signals and as adjuvants to activate specific anti-tumor immune responses, leading to the elimination of tumor cells and the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). However, due to the variety of photosensitizers used and the lack of a universally adopted PDT protocol, there is a need to develop novel PDT with a proven ICD capability. In the present study, we characterized the abilities of two photoactive dyes to induce ICD in experimental glioma in vitro and in vivo. One dye was from the tetracyanotetra(aryl)porphyrazine group with 9-phenanthrenyl (pz I), and the other was from the 4-(4-fluorobenzyoxy)phenyl (pz III) group in the aryl frame of the macrocycle. We showed that after the photosensitizers penetrated into murine glioma GL261 cells, they localized predominantly in the Golgi apparatus and partially in the endoplasmic reticulum, providing efficient phototoxic activity against glioma GL261 cells upon light irradiation at a dose of 20 J/cm2 (λex 630 nm; 20 mW/cm2). We demonstrated that pz I-PDT and pz III-PDT can act as efficient ICD inducers when applied to glioma GL261 cells, facilitating the release of two crucial DAMPs (ATP and HMGB1). Moreover, glioma GL261 cells stimulated with pz I-PDT or pz III-PDT provided strong protection against tumor growth in a prophylactic subcutaneous glioma vaccination model. Finally, we showed that dendritic cell (DC) vaccines pulsed with the lysates of glioma GL261 cells pre-treated with pz-I-PDT or pz-III-PDT could act as effective inducers of adaptive anti-tumor immunity in an intracranial orthotopic glioma mouse model.

7.
Cells ; 11(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406776

RESUMO

The current efforts in photodynamic therapy (PDT) of brain cancer are focused on the development of novel photosensitizers with improved photodynamic properties, targeted specific localization, and sensitivity to the irradiation dose, ensuring the effectiveness of PDT with fewer side effects for normal nerve tissue. Here, we characterize the effects of four photosensitizers of the tetracyanotetra(aryl)porphyrazine group (pz I-IV) on the functional activity of neuron-glial networks in primary hippocampal cultures in their application in normal conditions and under PDT. The data revealed that the application of pz I-IV leads to a significant decrease in the main parameters of the functional calcium activity of neuron-glial networks and pronounced changes in the network characteristics. The observed negative effects of pz I-IV were aggravated under PDT. Considering the significant restructuring of the functional architectonics of neuron-glial networks that can lead to severe impairments in synaptic transmission and loss of brain functions, and the feasibility of direct application of PDT based on pz I-IV in the therapy of brain tumors is highly controversial. Nevertheless, the unique properties of pz I-IV retain a great prospect of their use in the therapy of tumors of another origin and cellular metabolism.


Assuntos
Fotoquimioterapia , Hipocampo , Neuroglia , Neurônios , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
8.
Sci Rep ; 11(1): 7205, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785775

RESUMO

The immunogenicity of dying cancer cells determines the efficacy of anti-cancer therapy. Photodynamic therapy (PDT) can induce immunogenic cell death (ICD), which is characterized by the emission of damage-associated molecular patterns (DAMPs) from dying cells. This emission can trigger effective anti-tumor immunity. Only a few photosensitizers are known to induce ICD and, therefore, there is a need for development of new photosensitizers that can induce ICD. The purpose of this work was to analyze whether photosensitizers developed in-house from porphyrazines (pz I and pz III) can induce ICD in vitro and in vivo when used in PDT. We indetified the optimal concentrations of the photosensitizers and found that, at a light dose of 20 J/cm2 (λex 615-635 nm), both pz I and pz III efficiently induced cell death in cancer cells. We demonstrate that pz I localized predominantly in the Golgi apparatus and lysosomes while pz III in the endoplasmic reticulum and lysosomes. The cell death induced by pz I-PDT was inhibited by zVAD-fmk (apoptosis inhibitor) but not by ferrostatin-1 and DFO (ferroptosis inhibitors) or by necrostatin-1 s (necroptosis inhibitor). By contrast, the cell death induced by pz III-PDT was inhibited by z-VAD-fmk and by the necroptosis inhibitor, necrostatin-1 s. Cancer cells induced by pz I-PDT or pz III-PDT released HMGB1 and ATP and were engulfed by bone marrow-derived dendritic cells, which then matured and became activated in vitro. We demonstrate that cancer cells, after induction of cell death by pz I-PDT or pz III-PDT, are protective when used in the mouse model of prophylactic tumor vaccination. By vaccinating immunodeficient mice, we prove the role of the adaptive immune system in protecting against tumours. All together, we have shown that two novel porphyrazines developed in-house are potent ICD inducers that could be effectively applied in PDT of cancer.


Assuntos
Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química
9.
J Biophotonics ; 13(1): e201960077, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595675

RESUMO

Photodynamic therapy (PDT) is a clinically approved procedure for targeting tumor cells. Though several different photosensitizers have been developed, there is still much demand for novel photosensitizers with improved properties. In this study we aim to characterize the accumulation, localization and dark cytotoxicity of the novel photosensitizers developed in-house derivatives of porphyrazines (pz I-IV) in primary murine neuronal cells, as well as to identify the concentrations at which pz still effectively induces death in glioma cells yet is nontoxic to nontransformed cells. The study shows that incubation of primary neuronal and glioma cells with pz I-IV leads to their accumulation in both types of cells, but their rates of internalization, subcellular localization and dark toxicity differ significantly. Pz II was the most promising photosensitizer. It efficiently killed glioma cells while remaining nontoxic to primary neuronal cells. This opens up the possibility of evaluating pz II for experimental PDT for glioma.


Assuntos
Glioma , Fotoquimioterapia , Animais , Encéfalo , Linhagem Celular Tumoral , Camundongos , Fármacos Fotossensibilizantes/farmacologia
10.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188036

RESUMO

BACKGROUND: Immunotherapy represents the future of clinical cancer treatment. The type of cancer cell death determines the antitumor immune response and thereby contributes to the efficacy of anticancer therapy and long-term survival of patients. Induction of immunogenic apoptosis or necroptosis in cancer cells does activate antitumor immunity, but resistance to these cell death modalities is common. Therefore, it is of great importance to find other ways to kill tumor cells. Recently, ferroptosis has been identified as a novel, iron-dependent form of regulated cell death but whether ferroptotic cancer cells are immunogenic is unknown. METHODS: Ferroptotic cell death in murine fibrosarcoma MCA205 or glioma GL261 cells was induced by RAS-selective lethal 3 and ferroptosis was analyzed by flow cytometry, atomic force and confocal microscopy. ATP and high-mobility group box 1 (HMGB1) release were detected by luminescence and ELISA assays, respectively. Immunogenicity in vitro was analyzed by coculturing of ferroptotic cancer cells with bone-marrow derived dendritic cells (BMDCs) and rate of phagocytosis and activation/maturation of BMDCs (CD11c+CD86+, CD11c+CD40+, CD11c+MHCII+, IL-6, RNAseq analysis). The tumor prophylactic vaccination model in immune-competent and immune compromised (Rag-2-/-) mice was used to analyze ferroptosis immunogenicity. RESULTS: Ferroptosis can be induced in cancer cells by inhibition of glutathione peroxidase 4, as evidenced by confocal and atomic force microscopy and inhibitors' analysis. We demonstrate for the first time that ferroptosis is immunogenic in vitro and in vivo. Early, but not late, ferroptotic cells promote the phenotypic maturation of BMDCs and elicit a vaccination-like effect in immune-competent mice but not in Rag-2-/- mice, suggesting that the mechanism of immunogenicity is very tightly regulated by the adaptive immune system and is time dependent. Also, ATP and HMGB1, the best-characterized damage-associated molecular patterns involved in immunogenic cell death, have proven to be passively released along the timeline of ferroptosis and act as immunogenic signal associated with the immunogenicity of early ferroptotic cancer cells. CONCLUSIONS: These results pave the way for the development of new therapeutic strategies for cancers based on induction of ferroptosis, and thus broadens the current concept of immunogenic cell death and opens the door for the development of new strategies in cancer immunotherapy.


Assuntos
Ferroptose/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Vacinação/métodos , Animais , Feminino , Humanos , Masculino , Camundongos
11.
J Immunother Cancer ; 7(1): 350, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842994

RESUMO

BACKGROUND: Anti-cancer therapy is more successful when it can also induce an immunogenic form of cancer cell death (ICD). Therefore, when developing new treatment strategies, it is extremely important to choose methods that induce ICD and thereby activate anti-tumor immune response leading to the most effective destruction of tumor cells. The aim of this work was to analyze whether the clinically widely used photosensitizers, photosens (PS) and photodithazine (PD), can induce ICD when used in photodynamic therapy (PDT). METHODS: Cell death in murine glioma GL261 or fibrosarcoma MCA205 cells was induced by PS- or PD-PDT and cell death was analyzed by MTT or flow cytometry. Intracellular distribution of PS and PD was studied by using the laser scanning microscope. Calreticulin exposure and HMGB1 and ATP release were detected by flow cytometry, ELISA and luminescence assay, respectively. Immunogenicity in vitro was analyzed by co-culturing of dying cancer cells with bone-marrow derived dendritic cells (BMDCs) and rate of phagocytosis and maturation (CD11c+CD86+, CD11c+CD40+) of BMDCs and production of IL-6 in the supernatant were measured. In vivo immunogenicity was analyzed in mouse tumor prophylactic vaccination model. RESULTS: We determined the optimal concentrations of the photosensitizers and found that at a light dose of 20 J/cm2 (λex 615-635 nm) both PS and PD efficiently induced cell death in glioma GL261 and fibrosarcoma MCA205 cells. We demonstrate that PS localized predominantly in the lysosomes and that the cell death induced by PS-PDT was inhibited by zVAD-fmk (apoptosis inhibitor) and by ferrostatin-1 and DFO (ferroptosis inhibitors), but not by the necroptosis inhibitor necrostatin-1 s. By contrast, PD accumulated in the endoplasmic reticulum and Golgi apparatus, and the cell death induced by PD-PDT was inhibited only by z-VAD-fmk. Dying cancer cells induced by PS-PDT or PD-PDT emit calreticulin, HMGB1 and ATP and they were efficiently engulfed by BMDCs, which then matured, became activated and produced IL-6. Using dying cancer cells induced by PS-PDT or PD-PDT, we demonstrate the efficient vaccination potential of ICD in vivo. CONCLUSIONS: Altogether, these results identify PS and PD as novel ICD inducers that could be effectively combined with PDT in cancer therapy.


Assuntos
Glucosamina/análogos & derivados , Indóis/farmacologia , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Biomarcadores , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Imunofluorescência , Glucosamina/farmacologia , Camundongos , Fagocitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA