Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(10): 2052-2064, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35074865

RESUMO

Electrical stimulation of the peripheral nerves of human participants provides a unique opportunity to study the neural determinants of perceptual quality using a causal manipulation. A major challenge in the study of neural coding of touch has been to isolate the role of spike timing-at the scale of milliseconds or tens of milliseconds-in shaping the sensory experience. In the present study, we address this question by systematically varying the pulse frequency (PF) of electrical stimulation pulse trains delivered to the peripheral nerves of seven participants with upper and lower extremity limb loss via chronically implanted neural interfaces. We find that increases in PF lead to systematic increases in perceived frequency, up to ∼50 Hz, at which point further changes in PF have little to no impact on sensory quality. Above this transition frequency, ratings of perceived frequency level off, the ability to discriminate changes in PF is abolished, and verbal descriptors selected to characterize the sensation change abruptly. We conclude that sensation quality is shaped by temporal patterns of neural activation, even if these patterns are imposed on a fixed neural population, but this temporal patterning can only be resolved up to ∼50 Hz. These findings highlight the importance of spike timing in shaping the quality of a sensation and will contribute to the development of encoding strategies for conveying touch feedback through bionic hands and feet.SIGNIFICANCE STATEMENT A major challenge in the study of neural coding of touch has been to understand how temporal patterns in neuronal responses shape the sensory experience. We address this question by varying the pulse frequency (PF) of electrical pulse trains delivered through implanted nerve interfaces in seven amputees. We concomitantly vary pulse width to separate the effect of changing PF on sensory quality from its effect on perceived magnitude. We find that increases in PF lead to increases in perceived frequency, a qualitative dimension, up to ∼50 Hz, beyond which changes in PF have little impact on quality. We conclude that temporal patterning in the neuronal response can shape quality and discuss the implications for restoring touch via neural interfaces.


Assuntos
Amputados , Percepção do Tato , Estimulação Elétrica/métodos , Mãos , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia
2.
J Neuroeng Rehabil ; 18(1): 50, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736656

RESUMO

BACKGROUND: Current commercial prosthetic hand controllers limit patients' ability to fully engage high Degree-of-Freedom (DoF) prosthetic hands. Available feedforward controllers rely on large training data sets for controller setup and a need for recalibration upon prosthesis donning. Recently, an intuitive, proportional, simultaneous, regression-based 3-DoF controller remained stable for several months without retraining by combining chronically implanted electromyography (ciEMG) electrodes with a K-Nearest-Neighbor (KNN) mapping technique. The training dataset requirements for simultaneous KNN controllers increase exponentially with DoF, limiting the realistic development of KNN controllers in more than three DoF. We hypothesize that a controller combining linear interpolation, the muscle synergy framework, and a sufficient number of ciEMG channels (at least two per DoF), can allow stable, high-DoF control. METHODS: Two trans-radial amputee subjects, S6 and S8, were implanted with percutaneously interfaced bipolar intramuscular electrodes. At the time of the study, S6 and S8 had 6 and 8 bipolar EMG electrodes, respectively. A Virtual Reality (VR) system guided users through single and paired training movements in one 3-DoF and four different 4-DoF cases. A linear model of user activity was built by partitioning EMG feature space into regions bounded by vectors of steady state movement EMG patterns. The controller evaluated online EMG signals by linearly interpolating the movement class labels for surrounding trained EMG movements. This yields a simultaneous, continuous, intuitive, and proportional controller. Controllers were evaluated in 3-DoF and 4-DoF through a target-matching task in which subjects controlled a virtual hand to match 80 targets spanning the available movement space. Match Percentage, Time-To-Target, and Path Efficiency were evaluated over a 10-month period based on subject availability. RESULTS AND CONCLUSIONS: In 3-DoF, S6 and S8 matched most targets and demonstrated stable control after 8 and 10 months, respectively. In 4-DoF, both subjects initially found two of four 4-DoF controllers usable, matching most targets. S8 4-DoF controllers were stable, and showed improving trends over 7-9 months without retraining or at-home practice. S6 4-DoF controllers were unstable after 7 months without retraining. These results indicate that the performance of the controller proposed in this study may remain stable, or even improve, provided initial viability and a sufficient number of EMG channels. Overall, this study demonstrates a controller capable of stable, simultaneous, proportional, intuitive, and continuous control in 3-DoF for up to ten months and in 4-DoF for up to nine months without retraining or at-home use with minimal training times.


Assuntos
Amputados/reabilitação , Membros Artificiais , Eletrodos Implantados , Mãos , Movimento , Treinamento por Simulação/métodos , Realidade Virtual , Braço/inervação , Interfaces Cérebro-Computador , Eletromiografia/métodos , Humanos , Modelos Lineares , Masculino , Músculo Esquelético/inervação , Educação de Pacientes como Assunto/métodos , Modalidades de Fisioterapia/instrumentação , Software
3.
J Neuroeng Rehabil ; 17(1): 95, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664972

RESUMO

BACKGROUND: Peripheral nerve stimulation with implanted nerve cuff electrodes can restore standing, stepping and other functions to individuals with spinal cord injury (SCI). We performed the first study to evaluate the clinical electrodiagnostic changes due to electrode implantation acutely, chronic presence on the nerve peri- and post-operatively, and long-term delivery of electrical stimulation. METHODS: A man with bilateral lower extremity paralysis secondary to cervical SCI sustained 5 years prior to enrollment received an implanted standing neuroprosthesis including composite flat interface nerve electrodes (C-FINEs) electrodes implanted around the proximal femoral nerves near the inguinal ligaments. Electromyography quantified neurophysiology preoperatively, intraoperatively, and through 1 year postoperatively. Stimulation charge thresholds, evoked knee extension moments, and weight distribution during standing quantified neuroprosthesis function over the same interval. RESULTS: Femoral compound motor unit action potentials increased 31% in amplitude and 34% in area while evoked knee extension moments increased significantly (p < 0.01) by 79% over 1 year of rehabilitation with standing and quadriceps exercises. Charge thresholds were low and stable, averaging 19.7 nC ± 6.2 (SEM). Changes in saphenous nerve action potentials and needle electromyography suggested minor nerve irritation perioperatively. CONCLUSIONS: This is the first human trial reporting acute and chronic neurophysiologic changes due to application of and stimulation through nerve cuff electrodes. Electrodiagnostics indicated preserved nerve health with strengthened responses following stimulated exercise. Temporary electrodiagnostic changes suggest minor nerve irritation only intra- and peri-operatively, not continuing chronically nor impacting function. These outcomes follow implantation of a neuroprosthesis enabling standing and demonstrate the ability to safely implant electrodes on the proximal femoral nerve close to the inguinal ligament. We demonstrate the electrodiagnostic findings that can be expected from implanting nerve cuff electrodes and their time-course for resolution, potentially applicable to prostheses modulating other peripheral nerves and functions. TRIAL REGISTRATION: ClinicalTrials.gov NCT01923662 , retrospectively registered August 15, 2013.


Assuntos
Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados/efeitos adversos , Nervo Femoral/fisiologia , Próteses Neurais/efeitos adversos , Potenciais de Ação , Adulto , Fenômenos Biomecânicos , Terapia por Estimulação Elétrica/efeitos adversos , Eletrodiagnóstico , Eletromiografia , Humanos , Joelho , Masculino , Força Muscular , Paralisia/reabilitação , Paraplegia/reabilitação , Complicações Pós-Operatórias/epidemiologia , Traumatismos da Medula Espinal/reabilitação
4.
J Neuroeng Rehabil ; 16(1): 147, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752886

RESUMO

BACKGROUND: Modern prosthetic hands are typically controlled using skin surface electromyographic signals (EMG) from remaining muscles in the residual limb. However, surface electrode performance is limited by changes in skin impedance over time, day-to-day variations in electrode placement, and relative motion between the electrodes and underlying muscles during movement: these limitations require frequent retraining of controllers. In the presented study, we used chronically implanted intramuscular electrodes to minimize these effects and thus create a more robust prosthetic controller. METHODS: A study participant with a transradial amputation was chronically implanted with 8 intramuscular EMG electrodes. A K Nearest Neighbor (KNN) regression velocity controller was trained to predict intended joint movement direction using EMG data collected during a single training session. The resulting KNN was evaluated over 12 weeks and in multiple arm posture configurations, with the participant controlling a 3 Degree-of-Freedom (DOF) virtual reality (VR) hand to match target VR hand postures. The performance of this EMG-based controller was compared to a position-based controller that used movement measured from the participant's opposite (intact) hand. Surface EMG was also collected for signal quality comparisons. RESULTS: Signals from the implanted intramuscular electrodes exhibited less crosstalk between the various channels and had a higher Signal-to-Noise Ratio than surface electrode signals. The performance of the intramuscular EMG-based KNN controller in the VR control task showed no degradation over time, and was stable over the 6 different arm postures. Both the EMG-based KNN controller and the intact hand-based controller had 100% hand posture matching success rates, but the intact hand-based controller was slightly superior in regards to speed (trial time used) and directness of the VR hand control (path efficiency). CONCLUSIONS: Chronically implanted intramuscular electrodes provide negligible crosstalk, high SNR, and substantial VR control performance, including the ability to use a fixed controller over 12 weeks and under different arm positions. This approach can thus be a highly effective platform for advanced, multi-DOF prosthetic control.


Assuntos
Membros Artificiais , Eletrodos Implantados , Músculo Esquelético/fisiologia , Desenho de Prótese , Interface Usuário-Computador , Adulto , Amputação Cirúrgica , Eletromiografia/métodos , Mãos/fisiologia , Humanos , Masculino , Movimento/fisiologia
5.
Muscle Nerve ; 56(3): 463-471, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28006854

RESUMO

INTRODUCTION: In this study we provide detailed quantification of upper extremity nerve and fascicular anatomy. The purpose is to provide values and trends in neural features useful for clinical applications and neural interface device design. METHODS: Nerve cross-sections were taken from 4 ulnar, 4 median, and 3 radial nerves from 5 arms of 3 human cadavers. Quantified nerve features included cross-sectional area, minor diameter, and major diameter. Fascicular features analyzed included count, perimeter, area, and position. RESULTS: Mean fascicular diameters were 0.57 ± 0.39, 0.6 ± 0.3, 0.5 ± 0.26 mm in the upper arm and 0.38 ± 0.18, 0.47 ± 0.18, 0.4 ± 0.27 mm in the forearm of ulnar, median, and radial nerves, respectively. Mean fascicular diameters were inversely proportional to fascicle count. CONCLUSION: Detailed quantitative anatomy of upper extremity nerves is a resource for design of neural electrodes, guidance in extraneural procedures, and improved neurosurgical planning. Muscle Nerve 56: 463-471, 2017.


Assuntos
Braço/anatomia & histologia , Braço/inervação , Nervo Mediano/anatomia & histologia , Nervo Radial/anatomia & histologia , Nervo Ulnar/anatomia & histologia , Cadáver , Feminino , Humanos , Masculino , Nervos Periféricos/anatomia & histologia , Extremidade Superior/anatomia & histologia , Extremidade Superior/inervação
6.
J Neuroeng Rehabil ; 14(1): 70, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693584

RESUMO

BACKGROUND: Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. METHODS: Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. RESULTS: In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. CONCLUSIONS: The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Próteses Neurais , Nervos Periféricos , Nervo Femoral , Seguimentos , , Transtornos Neurológicos da Marcha/prevenção & controle , Humanos , Neurônios Motores , Fibras Musculares Esqueléticas , Doenças do Sistema Nervoso Periférico/reabilitação , Recrutamento Neurofisiológico , Nervo Tibial , Resultado do Tratamento
7.
Curr Opin Neurol ; 28(6): 574-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26544029

RESUMO

PURPOSE OF REVIEW: When an individual loses a limb, he/she loses touch with the world and with the people around him/her. Somatosensation is critical to the feeling of connection and control of one's own body. Decades of attempts to replace lost somatosensation by sensory substitutions have been ineffective outside of the laboratory. This review discusses important recent results demonstrating chronic somatosensory restoration through direct peripheral nerve stimulation. RECENT FINDINGS: Stimulation of peripheral nerves results in somatosensory perception on the phantom limb. Sensations are localized to several independent and functionally relevant locations, such as the fingertips, thenar eminence, ulnar border and dorsal surface. Patterns in stimulation intensity change the perception experience by the user, opening new dimensions on neuromodulation. SUMMARY: Neural interfaces with sophisticated stimulation paradigms create a user's perception of his/her hand to touch and manipulate objects. The pattern of intensity and frequency of stimulation is critical to the quality and intensity of perceived sensation. Restoring feeling has allowed the individuals to, 'feel [my] hand for the first time since the accident,' and 'feel [my] wife touch my hand'. Individuals using a prosthetic hand with sensation can pull cherries and grapes from the stem, open water bottles and move objects without destroying these objects - all while audio and visually deprived. After regaining sensation, phantom pain is eliminated in individuals that had frequent, sometimes debilitating, pain following limb loss. With over 5 subject-years of experience, this work is leading the evolution of a new era in prostheses. Somatosensory prosthetics as a standard procedure to augment and restore somatosensation are now within our reach.


Assuntos
Membros Artificiais , Estimulação Elétrica , Retroalimentação Sensorial/fisiologia , Mãos/fisiologia , Nervos Periféricos/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Mãos/inervação , Humanos
8.
Dysphagia ; 30(2): 176-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25618539

RESUMO

We describe a novel device and method for real-time measurement of lingual-palatal pressure and automatic identification of the oral transfer phase of deglutition. Clinical measurement of the oral transport phase of swallowing is a complicated process requiring either placement of obstructive sensors or sitting within a fluoroscope or articulograph for recording. Existing detection algorithms distinguish oral events with EMG, sound, and pressure signals from the head and neck, but are imprecise and frequently result in false detection. We placed seven pressure sensors on a molded mouthpiece fitting over the upper teeth and hard palate and recorded pressure during a variety of swallow and non-swallow activities. Pressure measures and swallow times from 12 healthy and 7 Parkinson's subjects provided training data for a time-delay artificial neural network to categorize the recordings as swallow or non-swallow events. User-specific neural networks properly categorized 96 % of swallow and non-swallow events, while a generalized population-trained network was able to properly categorize 93 % of swallow and non-swallow events across all recordings. Lingual-palatal pressure signals are sufficient to selectively and specifically recognize the initiation of swallowing in healthy and dysphagic patients.


Assuntos
Transtornos de Deglutição/terapia , Deglutição/fisiologia , Redes Neurais de Computação , Palato Duro/fisiologia , Doença de Parkinson/complicações , Língua/fisiologia , Adulto , Idoso , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/fisiopatologia , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão
9.
Dysphagia ; 29(3): 346-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24562508

RESUMO

Paralysis of the structures in the head and neck due to stroke or other neurological disorder often causes dysphagia (difficulty in swallowing). Patients with dysphagia have a significantly higher incidence of aspiration pneumonia and death. The recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles that control the vocal folds, travels superiorly in parallel to the trachea in the tracheoesophageal groove. This study tests the hypothesis that functional electrical stimulation (FES) applied via transtracheal electrodes can produce controlled vocal fold adduction. Bipolar electrodes were placed at 15° intervals around the interior mucosal surface of the canine trachea, and current was applied to the tissue while electromyography (EMG) from the intrinsic laryngeal muscles and vocal fold movement visualization via laryngoscopy were recorded. The lowest EMG thresholds were found at an average location of 100° to the left of the ventral midsagittal line and 128° to the right. A rotatable pair of bipolar electrodes spaced 230° apart were able to stimulate bilaterally both RLNs in every subject. Laryngoscopy showed complete glottal closure with transtracheal stimulation in six of the eight subjects, and this closure was maintained under simultaneous FES-induced laryngeal elevation. Transtracheal stimulation is an effective tool for minimally invasive application of FES to induce vocal fold adduction, providing an alternative mechanism to study airway protection.


Assuntos
Estimulação Elétrica , Movimento/fisiologia , Nervo Laríngeo Recorrente/fisiologia , Prega Vocal/fisiologia , Animais , Cães , Eletrodos , Eletromiografia , Traqueia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38885096

RESUMO

Peripheral nerve stimulation (PNS) is an effective means to elicit sensation for rehabilitation of people with loss of a limb or limb function. While most current PNS paradigms deliver current through single electrode contacts to elicit each tactile percept, multi-contact extraneural electrodes offer the opportunity to deliver PNS with groups of contacts individually or simultaneously. Multi-contact PNS strategies could be advantageous in developing biomimetic PNS paradigms to recreate the natural neural activity during touch, because they may be able to selectively recruit multiple distinct neural populations. We used computational models and optimization approaches to develop a novel biomimetic PNS paradigm that uses interleaved multi-contact (IMC) PNS to approximate the critical neural coding properties underlying touch. The IMC paradigm combines field shaping, in which two contacts are active simultaneously, with pulse-by-pulse contact and parameter variations throughout the touch stimulus. We show in simulation that IMC PNS results in better neural code mimicry than single contact PNS created with the same optimization techniques, and that field steering via two-contact IMC PNS results in better neural code mimicry than one-contact IMC PNS. We also show that IMC PNS results in better neural code mimicry than existing PNS paradigms, including prior biomimetic PNS. Future clinical studies will determine if the IMC paradigm can improve the naturalness and usefulness of sensory feedback for those with neurological disorders.


Assuntos
Simulação por Computador , Nervos Periféricos , Tato , Humanos , Tato/fisiologia , Nervos Periféricos/fisiologia , Modelos Neurológicos , Biomimética , Algoritmos , Eletrodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Percepção do Tato/fisiologia
11.
J Neural Eng ; 21(3)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861967

RESUMO

Objective. We intend to chronically restore somatosensation and provide high-fidelity myoelectric control for those with limb loss via a novel, distributed, high-channel-count, implanted system.Approach.We have developed the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system to support peripheral nerve stimulation through up to 64, 96, or 128 electrode contacts with myoelectric recording from 16, 8, or 0 bipolar sites, respectively. The rechargeable central device has Bluetooth® wireless telemetry to communicate to external devices and wired connections for up to four implanted satellite stimulation or recording devices. We characterized the stimulation, recording, battery runtime, and wireless performance and completed safety testing to support its use in human trials.Results.The stimulator operates as expected across a range of parameters and can schedule multiple asynchronous, interleaved pulse trains subject to total charge delivery limits. Recorded signals in saline show negligible stimulus artifact when 10 cm from a 1 mA stimulating source. The wireless telemetry range exceeds 1 m (direction and orientation dependent) in a saline torso phantom. The bandwidth supports 100 Hz bidirectional update rates of stimulation commands and data features or streaming select full bandwidth myoelectric signals. Preliminary first-in-human data validates the bench testing result.Significance.We developed, tested, and clinically implemented an advanced, modular, fully implanted peripheral stimulation and sensing system for somatosensory restoration and myoelectric control. The modularity in electrode type and number, including distributed sensing and stimulation, supports a wide variety of applications; iSens® is a flexible platform to bring peripheral neuromodulation applications to clinical reality. ClinicalTrials.gov ID NCT04430218.


Assuntos
Eletromiografia , Humanos , Eletromiografia/métodos , Eletrodos Implantados , Tecnologia sem Fio/instrumentação , Telemetria/instrumentação , Telemetria/métodos , Desenho de Equipamento/métodos , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação
12.
Neurosurgery ; 94(4): 864-874, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982637

RESUMO

BACKGROUND AND OBJECTIVES: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. METHODS: A 27-year-old right-handed man with AIS-B (motor-complete, sensory-incomplete) C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of using a brain-machine interface to read from and write to the brain for restoring motor and sensory functions of the participant's own arm and hand. RESULTS: Multiunit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions, resulting in functional movements that the participant was able to command under brain control to perform virtual and actual arm and hand movements. The system was well tolerated with no operative complications. CONCLUSION: The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to create bidirectional restoration of motor and sensory functions of the arm and hand after neurological injury.


Assuntos
Braço , Interfaces Cérebro-Computador , Adulto , Humanos , Masculino , Braço/inervação , Encéfalo , Eletrodos Implantados , Mãos/fisiologia , Quadriplegia , Extremidade Superior , Ensaios Clínicos como Assunto
13.
Crit Rev Biomed Eng ; 41(6): 435-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24940658

RESUMO

Intracortical electrodes are important tools, with applications ranging from fundamental laboratory studies to potential solutions to intractable clinical applications. However, the longevity and reliability of the interfaces remain their major limitation to the wider implementation and adoption of this technology, especially in broader translational work. Accordingly, this review summarizes the most significant biological and technical factors influencing the long-term performance of intracortical electrodes. In a laboratory setting, intracortical electrodes have been used to study the normal and abnormal function of the brain. This improved understanding has led to valuable insights regarding many neurological conditions. Likewise, clinical applications of intracortical brain-machine interfaces offer the ability to improve the quality of life of many patients afflicted with high-level paralysis from spinal cord injury, brain stem stroke, amyotrophic lateral sclerosis, or other conditions. It is widely hypothesized that the tissue response to the electrodes, including inflammation, limits their longevity. Many studies have examined and modified the tissue response to intracortical electrodes to improve future intracortical electrode technologies. Overall, the relationship between biological, mechanical, and technological considerations are crucial for the fidelity of chronic electrode recordings and represent a presently active area of investigation in the field of neural engineering.


Assuntos
Engenharia Biomédica , Interfaces Cérebro-Computador , Eletrodos Implantados , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Animais , Córtex Cerebral/fisiologia , Cobaias , Haplorrinos , Humanos , Camundongos , Ratos
14.
J Neuroeng Rehabil ; 10: 25, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23442372

RESUMO

BACKGROUND: Multi-contact stimulating electrodes are gaining acceptance as a means for interfacing with the peripheral nervous system. These electrodes can potentially activate many independent populations of motor units within a single peripheral nerve, but quantifying their recruitment properties and the overlap in stimulation between contacts is difficult and time consuming. Further, current methods for quantifying overlap between contacts are ambiguous and can lead to suboptimal selective stimulation parameters. This study describes a novel method for optimizing stimulation parameters for multi-contact peripheral stimulating electrodes to produce strong, selective muscle contractions. The method is tested with four-contact spiral nerve-cuff electrodes implanted on bilateral femoral nerves of two individuals with spinal cord injury, but it is designed to be extendable to other electrode technologies with higher densities of contacts. METHODS: To optimize selective stimulation parameters for multi-contact electrodes, first, recruitment and overlap are characterized for all contacts within an electrode. Recruitment is measured with the twitch response to single stimulus pulses, and overlap between pairs of contacts is quantified by the deviation in their combined response from linear addition of individual responses. Simple mathematical models are fit to recruitment and overlap data, and a cost function is defined to maximize recruitment and minimize overlap between all contacts. RESULTS: Results are presented for four-contact nerve-cuff electrodes stimulating bilateral femoral nerves of two human subjects with spinal cord injury. Knee extension moments between 11.6 and 43.2 Nm were achieved with selective stimulation through multiple contacts of each nerve-cuff with less than 10% overlap between pairs of contacts. The overlap in stimulation measured in response to selective stimulation parameters was stable at multiple repeated time points after implantation. CONCLUSIONS: These results suggest that the method described here can provide an automated means of determining stimulus parameters to achieve strong muscle contractions via selective stimulation through multi-contact peripheral nerve electrodes.


Assuntos
Estimulação Elétrica/métodos , Eletrodos Implantados , Algoritmos , Nervo Femoral/fisiologia , Humanos , Articulações/fisiologia , Joelho/inervação , Joelho/fisiologia , Modelos Estatísticos , Neurônios Motores/fisiologia , Movimento/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Sistema Nervoso Periférico/fisiologia , Recrutamento Neurofisiológico/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
15.
Nat Biomed Eng ; 7(4): 443-455, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230305

RESUMO

Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies' long-term prospects.


Assuntos
Membros Artificiais , Robótica , Humanos , Biônica , Desenho de Prótese , Mãos
16.
J Neural Eng ; 20(6)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37863034

RESUMO

Objective.This study's objective is to understand distally-referred surface electrical nerve stimulation (DR-SENS) and evaluates the effects of electrode placement, polarity, and stimulation intensity on the location of elicited sensations in non-disabled individuals.Approach.A two-phased human experiment was used to characterize DR-SENS. In Experiment One, we explored 182 electrode combinations to identify a subset of electrode position combinations that would be most likely to elicit distally-referred sensations isolated to the index finger without discomfort. In Experiment Two, we further examined this subset of electrode combinations to determine the effect of stimulation intensity and electrode position on perceived sensation location. Stimulation thresholds were evaluated using parameter estimation by sequential testing and sensation locations were characterized using psychometric intensity tests.Main Results.We found that electrode positions distal to the wrist can consistently evoke distally referred sensations with no significant polarity dependency. The finger-palm combination had the most occurrences of distal sensations, and the different variations of this combination did not have a significant effect on sensation location. Increasing stimulation intensity significantly expanded the area of the sensation, moved the most distal sensation distally, and moved the vertical centroid proximally. Also, a large anodic-leading electrode at the elbow mitigated all sensation at the anodic-leading electrode site while using symmetric stimulation waveforms. Furthermore, this study showed that the most intense sensation for a given percept can be distally referred. Lastly, for each participant, at least one of the finger-palm combinations evaluated in this study worked at both perception threshold and maximum comfortable stimulation intensities.Significance.These findings show that a non-invasive surface electrical stimulation charge modulated haptic interface can be used to elicit distally-referred sensations on non-disabled users. Furthermore, these results inform the design of novel haptic interfaces and other applications of surface electrical stimulation based haptic feedback on electrodes positioned distally from the wrist.


Assuntos
Interface Háptica , Tecnologia Háptica , Humanos , Retroalimentação , Mãos/fisiologia , Estimulação Elétrica/métodos
17.
medRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162904

RESUMO

Background: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. Objective: We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. Methods: A right-handed man with motor-complete C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of a bidirectional brain-machine interface to restore function of the participant's own arm and hand. Results: Multi-unit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions. The system was well tolerated with no operative complications. Conclusion: The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to allow restoration of motor and sensory functions of the arm and hand after neurological injury.

18.
J Comput Neurosci ; 33(1): 179-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22222951

RESUMO

Ankle control is critical to both standing balance and efficient walking. The hypothesis presented in this paper is that a Flat Interface Nerve Electrode (FINE) placed around the sciatic nerve with a fixed number of contacts at predetermined locations and without a priori knowledge of the nerve's underlying neuroanatomy can selectively control each ankle motion. Models of the human sciatic nerve surrounded by a FINE of varying size were created and used to calculate the probability of selective activation of axons within any arbitrarily designated, contiguous group of fascicles. Simulations support the hypothesis and suggest that currently available implantable technology cannot selectively recruit each target plantar flexor individually but can restore plantar flexion or dorsiflexion from a site on the sciatic nerve without spillover to antagonists. Successful activation of individual ankle muscles in 90% of the population can be achieved by utilizing bipolar stimulation and/or by using a cuff with at least 20 contacts.


Assuntos
Eletrodos Implantados , Modelos Teóricos , Probabilidade , Recrutamento Neurofisiológico/fisiologia , Nervo Isquiático/fisiologia , Articulação do Tornozelo/fisiologia , Axônios/fisiologia , Biofísica , Estimulação Elétrica , Eletrodos , Humanos , Movimento/fisiologia , Nervo Isquiático/citologia
19.
J Biomech ; 136: 111058, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349870

RESUMO

Design of interface devices for effective, long-term integration into neural tissue is dependent on the biomechanical properties of the nerve membranes. Within the peripheral nerve, the two relevant connective tissue layers for interfacing are the epineurium and perineurium. Previous work has reported the forces needed to penetrate the whole nerve, but the mechanical differences between epineurium and perineurium were not reported. Design of intraneural electrodes that place electrodes within the nerve requires knowledge of the mechanics of individual tissues. This study quantified the Young's moduli and ultimate strains of the perineurium and the epineurium separately. We also measured the forces necessary to penetrate each tissue in isolation. We used a custom-built microtensile testing device to measure the Young's modulus values. The measured Young's moduli of the epineurium and the perineurium was 0.4 ± 0.1 MPa and 3.0 ± 0.3 MPa, respectively. We also measured the force required for blunt and sharp stainless steel, 100 µm diameter probes to be inserted into isolated epineurial tissue and perineurial tissue at 2 mm/s. These data provide additional guidelines for selection of materials for long-term implants that best match the tissue properties. The results will guide neural interface design such that electrodes can be placed through either the epineurium alone or both the epineurium and perineurium.


Assuntos
Nervos Periféricos , Nervo Isquiático , Animais , Tecido Conjuntivo , Nervos Periféricos/fisiologia , Coelhos , Nervo Isquiático/fisiologia
20.
J Neural Eng ; 18(6)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34706351

RESUMO

Objective.Computational models have shown that directional electrical contacts placed within the epineurium, between the fascicles, and not penetrating the perineurium, can achieve selectivity levels similar to point source contacts placed within the fascicle. The objective of this study is to test, in a murine model, the hypothesis that directed interfascicular contacts are selective.Approach.Multiple interfascicular electrodes with directional contacts, exposed on a single face, were implanted in the sciatic nerves of 32 rabbits. Fine-wire intramuscular wire electrodes were implanted to measure electromyographic (EMG) activity from medial and lateral gastrocnemius, soleus, and tibialis anterior muscles.Main results.The recruitment data demonstrated that directed interfascicular interfaces, which do not penetrate the perineurium, selectively activate different axon populations.Significance.Interfascicular interfaces that are inside the nerve, but do not penetrate the perineurium are an alternative to intrafascicular interfaces and may offer additional selectivity compared to extraneural approaches.


Assuntos
Nervos Periféricos , Estimulação Elétrica Nervosa Transcutânea , Animais , Axônios/fisiologia , Estimulação Elétrica/métodos , Eletrodos Implantados , Camundongos , Nervos Periféricos/fisiologia , Coelhos , Nervo Isquiático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA