Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33412089

RESUMO

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Assuntos
Anticorpos Neutralizantes/imunologia , Biomarcadores/análise , COVID-19/imunologia , COVID-19/fisiopatologia , Adulto , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Biomarcadores/sangue , COVID-19/sangue , COVID-19/epidemiologia , Comorbidade , Coronavirus/classificação , Coronavirus/fisiologia , Reações Cruzadas , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/análise , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Análise de Sobrevida , Resultado do Tratamento
2.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34890551

RESUMO

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
3.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32246942

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Assuntos
Comunicação Celular/genética , Doença/genética , Oligodendroglia/metabolismo , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/fisiologia , Fatores de Risco
4.
Immunity ; 57(6): 1243-1259.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38744291

RESUMO

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.


Assuntos
Acetilcolina , Cloretos , Células Epiteliais , Mucosa Intestinal , Animais , Acetilcolina/metabolismo , Camundongos , Cloretos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células em Tufo
5.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392959

RESUMO

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Assuntos
Adenina/análogos & derivados , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioblastoma/patologia , Adenina/análise , Adenina/química , Adulto , Idoso , Homólogo AlkB 1 da Histona H2a Dioxigenase/antagonistas & inibidores , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Hipóxia Celular , Criança , Epigenômica , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732025

RESUMO

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição , Células-Tronco Neoplásicas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética
7.
Immunity ; 52(3): 528-541.e7, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32160525

RESUMO

Helminths, allergens, and certain protists induce type 2 immune responses, but the underlying mechanisms of immune activation remain poorly understood. In the small intestine, chemosensing by epithelial tuft cells results in the activation of group 2 innate lymphoid cells (ILC2s), which subsequently drive increased tuft cell frequency. This feedforward circuit is essential for intestinal remodeling and helminth clearance. ILC2 activation requires tuft-cell-derived interleukin-25 (IL-25), but whether additional signals regulate the circuit is unclear. Here, we show that tuft cells secrete cysteinyl leukotrienes (cysLTs) to rapidly activate type 2 immunity following chemosensing of helminth infection. CysLTs cooperate with IL-25 to activate ILC2s, and tuft-cell-specific ablation of leukotriene synthesis attenuates type 2 immunity and delays helminth clearance. Conversely, cysLTs are dispensable for the tuft cell response induced by intestinal protists. Our findings identify an additional tuft cell effector function and suggest context-specific regulation of tuft-ILC2 circuits within the small intestine.


Assuntos
Cisteína/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Leucotrienos/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/metabolismo , Cisteína/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Imunidade Inata/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Leucotrienos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nippostrongylus/fisiologia , Infecções por Strongylida/parasitologia
8.
Nature ; 615(7954): 817-822, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746190

RESUMO

Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors1. For many qubit technologies2-21, some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources1,22-28. We use an array of six 28Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics29. We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking30, finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon5-9,16,18,20,22,27,29,31-37, the all-electrical and low-crosstalk-control of partial swap operations1,22-28 and the configurable insensitivity of our encoding to certain error sources28,33,34,38 all combine to offer a strong pathway towards scalable fault tolerance and computational advantage.

9.
Mol Cell ; 78(5): 941-950.e12, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32464092

RESUMO

mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.


Assuntos
Grânulos Citoplasmáticos/fisiologia , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Animais , Grânulos Citoplasmáticos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/metabolismo , Organelas/fisiologia , RNA/genética , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética
10.
Proc Natl Acad Sci U S A ; 121(13): e2319856121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513098

RESUMO

The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Interleucina-7 , Lipossomos , Nanopartículas , Biossíntese de Proteínas , RNA Mensageiro , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Interleucina-7/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia
11.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454606

RESUMO

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , AVC Isquêmico , Lipossomos , Nanopartículas , Molécula 1 de Adesão de Célula Vascular , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Animais , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Nanopartículas/química , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Humanos
12.
Genes Dev ; 31(10): 973-989, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28607179

RESUMO

Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/fisiopatologia , Animais , Linhagem Celular Tumoral , Linhagem da Célula/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Inativação de Genes , Linfoma não Hodgkin/genética , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas Repressoras , Transdução de Sinais/genética
13.
Eur Respir J ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936966

RESUMO

BACKGROUND: Early diagnosis of pulmonary hypertension (PH) is critical for effective treatment and management. We aimed to develop and externally validate an artificial intelligence algorithm that could serve as a PH screening tool, based on analysis of a standard 12-lead electrocardiogram (ECG). METHODS: The PH Early Detection Algorithm (PH-EDA) is a convolutional neural network developed using retrospective ECG voltage-time data, with patients classified as "PH-likely" or "PH-unlikely" (controls) based on right heart catheterisation or echocardiography. In total, 39 823 PH-likely patients and 219 404 control patients from Mayo Clinic were randomly split into training (48%), validation (12%), and test (40%) sets. ECGs taken within 1 month of PH diagnosis (diagnostic dataset) were used to train the PH-EDA at Mayo Clinic. Performance was tested on diagnostic ECGs within the test sets from Mayo Clinic (n=16 175/87 998 PH-likely/controls) and Vanderbilt University Medical Center (VUMC; n=6045/24 256 PH-likely/controls). Performance was also tested on ECGs taken 6-18 months (pre-emptive dataset), and up to 5 years prior to a PH diagnosis at both sites. RESULTS: Performance testing yielded an area under the receiver operating characteristic curve (AUC) of 0.92 and 0.88 in the diagnostic test set at Mayo Clinic and VUMC, respectively, and 0.86 and 0.81, respectively, in the pre-emptive test set. The AUC remained a minimum of 0.79 at Mayo Clinic and 0.73 at VUMC up to 5 years before diagnosis. CONCLUSION: The PH-EDA can detect PH at diagnosis and 6-18 months prior, demonstrating the potential to accelerate diagnosis and management of this debilitating disease.

14.
Small ; 20(11): e2304378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072809

RESUMO

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Assuntos
Nanopartículas , Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Lipossomos , Transfecção , Anticorpos , Engenharia Celular , RNA Interferente Pequeno
15.
Ann Neurol ; 94(2): 350-365, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084040

RESUMO

OBJECTIVE: We aimed to prospectively quantify changes in white matter morphology after neurobehavioral therapy (NBT) for functional seizures (FS) using neurite orientation dispersion and density imaging (NODDI). We hypothesized that patients with FS would exhibit white matter plasticity in the uncinate fasciculus, fornix/stria terminalis, cingulum, and corticospinal tract following NBT that would correlate with improvements in affective symptoms, postconcussive symptoms, and quality of life (QOL). METHODS: Forty-two patients with traumatic brain injury (TBI) and FS (TBI+FS) underwent NBT and provided pre-/postintervention neuroimaging and behavioral data; 47 controls with TBI without FS (TBI-only) completed the same measures but did not receive NBT. Changes in neurite density, orientation dispersion (orientation dispersion index [ODI]), and extracellular free water (FW) were compared between groups. RESULTS: Significant ODI increases in the left uncinate fasciculus in TBI+FS (mean difference = 0.017, p = 0.039) correlated with improvements in posttraumatic symptoms (r = -0.395, p = 0.013), QOL (r = 0.474, p = 0.002), emotional well-being (r = 0.524, p < 0.001), and energy (r = 0.474, p = 0.002). In TBI-only, ODI decreased (mean difference = -0.008, p = 0.047) and FW increased (mean difference = 0.011, p = 0.003) in the right cingulum. FW increases correlated with increased psychological problems (r = 0.383, p = 0.013). In TBI+FS, NBT resulted in FS decreases of 3.5 seizures per week. None of the imaging changes correlated with FS frequency. INTERPRETATION: We identified white matter changes after NBT in patients with FS that were associated with improved psychosocial functioning. NODDI could be incorporated into future mechanistic assessments of interventions in patients with FS. ANN NEUROL 2023;94:350-365.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Qualidade de Vida , Neuritos , Convulsões/diagnóstico por imagem
16.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230138, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481168

RESUMO

OBJECTIVE: Functional seizures are common among people with traumatic brain injury (TBI). Subjective cognitive concerns refer to a person's own perception of problems with cognitive functioning in everyday life. The authors investigated the presence and correlates of subjective cognitive concerns and the response to neurobehavioral therapy among adults with TBI and functional seizures (TBI+FS group). METHODS: In this observational study, participants in the TBI+FS group (N=47) completed a 12-session neurobehavioral therapy protocol for seizures, while participants in the comparison group (TBI without seizures) (N=50) received usual treatment. Subjective cognitive concerns, objective cognition, mental health, and quality of life were assessed before and after treatment. Data collection occurred from 2018 to 2022. RESULTS: Baseline subjective cognitive concerns were reported for 37 (79%) participants in the TBI+FS group and 20 (40%) participants in the comparison group. In a multivariable regression model in the TBI+FS group, baseline global mental health (ß=-0.97) and obsessive-compulsive symptoms (ß=-1.01) were associated with subjective cognitive concerns at baseline. The TBI+FS group had fewer subjective cognitive concerns after treatment (η2=0.09), whereas the TBI comparison group showed a nonsignificant increase in subjective cognitive concerns. CONCLUSIONS: Subjective cognitive concerns are common among people with TBI and functional seizures and may be related to general mental health and obsessive-compulsive symptoms. Evidence-based neurobehavioral therapy for functional seizures is a reasonable treatment option to address such concerns in this population, although additional studies in culturally diverse samples are needed. In addition, people with functional seizures would likely benefit from rehabilitation specifically targeted toward cognitive functioning.

17.
Nature ; 553(7686): 101-105, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258295

RESUMO

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Assuntos
Elementos Facilitadores Genéticos/genética , Ependimoma/tratamento farmacológico , Ependimoma/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Terapia de Alvo Molecular , Oncogenes/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Ependimoma/classificação , Ependimoma/patologia , Feminino , Humanos , Camundongos , Medicina de Precisão , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Arthroplasty ; 39(3): 750-753, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37640246

RESUMO

BACKGROUND: Femoral neck retaining prostheses have gained popularity in Europe, but the United States has not seen the same trends occurring. Previous reports demonstrate high survivorship for these implants, but to our knowledge, there are no reports examining US data. METHODS: After institutional review board approval, 824 primary total hip arthroplasties utilizing a femoral neck-retaining prosthesis were examined for femoral component survivorship rates. European studies were systematically reviewed to determine survivorship rates. The data were used to formulate a Kaplan-Meier survivorship curve and compare US data to that of the European studies. RESULTS: European studies demonstrated survivorship rates for all causes of 97.7 and 99.0% for aseptic loosening at an average of 6 years (range, 4.5 to 10). The current study demonstrated an all-cause 94% Kaplan-Meier survivorship estimate at 5 years and when aseptic loosening only was considered, survivorship increased to 99.4% at 5 years and 98.4% at 11 years. CONCLUSION: This femoral neck-retaining prosthesis demonstrated excellent survivorship that is comparable to the rates seen in European studies as well as the rates of standard and mid-stem prostheses in the United States.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Estados Unidos , Estudos Retrospectivos , Colo do Fêmur/cirurgia , Resultado do Tratamento , Fêmur/cirurgia , Desenho de Prótese , Falha de Prótese , Reoperação , Seguimentos
19.
J Arthroplasty ; 39(6): 1463-1467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38103803

RESUMO

BACKGROUND: Spinal anesthesia is the predominant regimen in outpatient total joint arthroplasty (TJA), but induction often is unsuccessful, unobtainable, or against patient preference. We compared outcomes of same-day discharge (SDD) TJA with spinal versus general anesthesia in a free-standing ambulatory surgery center (ASC). METHODS: We took 105 general anesthesia TJA and one-to-one nearest-neighbor matched them to 105 spinal anesthesia TJA over 7 years at 1 ASC. The rate of successful SDD, minutes to discharge, postoperative pain and nausea, and 90-day complications were compared. Postanesthesia care unit outcomes were additionally stratified by spinal anesthetic (mepivacaine versus bupivacaine). RESULTS: All spinal anesthetic patients underwent SDD compared with 103 (98%) general anesthetic patients (P = .498). Mepivacaine spinal anesthesia patients spent the fewest minutes in postanesthesia care unit prior to discharge from the facility (206), followed by general anesthesia (227), and bupivacaine spinal anesthesia (291; P < .001). General anesthesia patients had the highest levels of pain at 1 hour (5.2 versus 1.5 versus 1.5) and 2 hours (3.2 versus 2.0 versus 1.3) postoperatively, and rates of nausea (48 versus 22 versus 28%) compared with mepivacaine and bupivacaine spinal anesthesia, respectively. The 90-day complications (6 versus 7), admissions (1 versus 3), and reoperations (5 versus 2) were similar among spinal and general anesthesia, respectively (P ≥ .445). CONCLUSIONS: Both spinal and general anesthesia led to reliable SDD with similar 90-day complication rates. General anesthesia facilitated faster discharge from the ASC compared with bupivacaine spinal anesthesia but led to higher levels of pain and incidence of nausea postoperatively. LEVEL OF EVIDENCE: Level 3, Retrospective Cohort Comparison.


Assuntos
Procedimentos Cirúrgicos Ambulatórios , Anestesia Geral , Raquianestesia , Artroplastia de Quadril , Artroplastia do Joelho , Dor Pós-Operatória , Humanos , Artroplastia do Joelho/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/tratamento farmacológico , Estudos Retrospectivos , Estudos de Coortes , Mepivacaína/administração & dosagem , Bupivacaína/administração & dosagem , Alta do Paciente/estatística & dados numéricos , Anestésicos Locais/administração & dosagem
20.
Angew Chem Int Ed Engl ; 63(3): e202316578, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38032347

RESUMO

Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron-rich C-H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether-based polyurethane in a green solvent. This work demonstrates a facile, electrochemically-driven route to degrade polymers containing ether functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA