Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Hum Mol Genet ; 32(6): 917-933, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190515

RESUMO

Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.


Assuntos
Hiperglicinemia não Cetótica , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Proteínas/genética , Mutação , Éxons/genética , Glicina/genética , Glicina/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474060

RESUMO

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Assuntos
Hiperglicinemia não Cetótica , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Glicina Desidrogenase (Descarboxilante)/genética , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Glicina , Serina
3.
J Inherit Metab Dis ; 46(2): 261-272, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564894

RESUMO

Coenzyme A (CoA) is an essential cofactor involved in a range of metabolic pathways including the activation of long-chain fatty acids for catabolism. Cells synthesize CoA de novo from vitamin B5 (pantothenate) via a pathway strongly conserved across prokaryotes and eukaryotes. In humans, it involves five enzymatic steps catalyzed by four enzymes: pantothenate kinase (PANK [isoforms 1-4]), 4'-phosphopantothenoylcysteine synthetase (PPCS), phosphopantothenoylcysteine decarboxylase (PPCDC), and CoA synthase (COASY). To date, inborn errors of metabolism associated with all of these genes, except PPCDC, have been described, two related to neurodegeneration with brain iron accumulation (NBIA), and one associated with a cardiac phenotype. This paper reports another defect in this pathway (detected in two sisters), associated with a fatal cardiac phenotype, caused by biallelic variants (p.Thr53Pro and p.Ala95Val) of PPCDC. PPCDC enzyme (EC 4.1.1.36) catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine in CoA biosynthesis. The variants p.Thr53Pro and p.Ala95Val affect residues highly conserved across different species; p.Thr53Pro is involved in the binding of flavin mononucleotide, and p.Ala95Val is likely a destabilizing mutation. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. In summary, this work describes a new, ultra-rare, severe inborn error of metabolism due to pathogenic variants of PPCDC.


Assuntos
Carboxiliases , Cardiomiopatia Dilatada , Humanos , Carboxiliases/genética , Coenzima A/genética , Coração , Saccharomyces cerevisiae/genética
4.
Hum Mutat ; 43(10): 1430-1442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35789514

RESUMO

Different strategies are being investigated for treating PMM2-CDG, the most common congenital disorder of glycosylation. The use of pharmacochaperones (PCs) is one of the most promising. The present work characterizes the expression, stability, and enzymatic properties of 15 previously described clinical variants of the PMM2 protein, four novel variants, the Pmm2 mouse variant p.Phe115Leu, and its p.Phe119Leu human counterpart, with the aim of extending the potential use of pharmacochaperoning treatment. PMM2 variants were purified as stable homodimers, except for p.Asp65Gly, p.Ile120Thr, and p.Thr237Lys (no expression detected), p.Thr226Ser and p.Val231Met (aggregates), and p.Glu93Ala, p.Phe119Leu, and p.Phe115Leu (partial dissociated). Enzyme activity analyses identified severe variants and milder ones. Pure dimeric mutant proteins showed a reduction in thermal stability except for p.Asn216Asp. The thermal stability of all the unstable mutants was recovered in the presence of the PC compound VIII. This study adds to the list of destabilizing human variants amenable to rescue by small chemical compounds that increase the stability/activity of PMM2. The proposed platform can be reliably used for assessing the disease-causing effects of PMM2 missense variants, for assessing the correlation between genotype and phenotype, for confirming new clinical defects, and for identifying destabilizing mutations amenable to rescue by PCs.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Animais , Defeitos Congênitos da Glicosilação/genética , Glicosilação , Humanos , Camundongos , Mutação , Fenótipo , Fosfotransferases (Fosfomutases)/genética
5.
Clin Genet ; 102(1): 40-55, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388452

RESUMO

Glucose transporter 1 deficiency syndrome (GLUT1DS) is a neurometabolic disorder caused by haploinsufficiency of the GLUT1 glucose transporter (encoded by SLC2A1) leading to defective glucose transport across the blood-brain barrier. This work describes the genetic analysis of 56 patients with clinical or biochemical GLUT1DS hallmarks. 55.4% of these patients had a pathogenic variant of SLC2A1, and 23.2% had a variant in one of 13 different genes. No pathogenic variant was identified for the remaining patients. Expression analysis of SLC2A1 indicated a reduction in SLC2A1 mRNA in patients with pathogenic variants of this gene, as well as in one patient with a pathogenic variant in SLC9A6, and in three for whom no candidate variant was identified. Thus, the clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Erros Inatos do Metabolismo dos Carboidratos/genética , Testes Genéticos , Transportador de Glucose Tipo 1/genética , Humanos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética
6.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361642

RESUMO

Inborn errors of metabolism (IEM) constitute a huge group of rare diseases affecting 1 in every 1000 newborns. Next-generation sequencing has transformed the diagnosis of IEM, leading to its proposed use as a second-tier technology for confirming cases detected by clinical/biochemical studies or newborn screening. The diagnosis rate is, however, still not 100%. This paper reports the use of a personalized multi-omics (metabolomic, genomic and transcriptomic) pipeline plus functional genomics to aid in the genetic diagnosis of six unsolved cases, with a clinical and/or biochemical diagnosis of galactosemia, mucopolysaccharidosis type I (MPS I), maple syrup urine disease (MSUD), hyperphenylalaninemia (HPA), citrullinemia, or urea cycle deficiency. Eight novel variants in six genes were identified: six (four of them deep intronic) located in GALE, IDUA, PTS, ASS1 and OTC, all affecting the splicing process, and two located in the promoters of IDUA and PTS, thus affecting these genes' expression. All the new variants were subjected to functional analysis to verify their pathogenic effects. This work underscores how the combination of different omics technologies and functional analysis can solve elusive cases in clinical practice.


Assuntos
Doença da Urina de Xarope de Bordo , Erros Inatos do Metabolismo , Recém-Nascido , Humanos , Exoma , Sequenciamento do Exoma , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Triagem Neonatal
7.
Hum Mutat ; 41(7): 1329-1338, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333439

RESUMO

Biallelic variants of the gene DNAJC12, which encodes a cochaperone, were recently described in patients with hyperphenylalaninemia (HPA). This paper reports the retrospective genetic analysis of a cohort of unsolved cases of HPA. Biallelic variants of DNAJC12 were identified in 20 patients (generally neurologically asymptomatic) previously diagnosed with phenylalanine hydroxylase (PAH) deficiency (phenylketonuria [PKU]). Further, mutations of DNAJC12 were identified in four carriers of a pathogenic variant of PAH. The genetic spectrum of DNAJC12 in the present patients included four new variants, two intronic changes c.298-2A>C and c.502+1G>C, presumably affecting the splicing process, and two exonic changes c.309G>T (p.Trp103Cys) and c.524G>A (p.Trp175Ter), classified as variants of unknown clinical significance (VUS). The variant p.Trp175Ter was detected in 83% of the mutant alleles, with 14 cases homozygous, and was present in 0.3% of a Spanish control population. Functional analysis indicated a significant reduction in PAH and its activity, reduced tyrosine hydroxylase stability, but no effect on tryptophan hydroxylase 2 stability, classifying the two VUS as pathogenic variants. Additionally, the effect of the overexpression of DNAJC12 on some destabilizing PAH mutations was examined and a mutation-specific effect on stabilization was detected suggesting that the proteostasis network could be a genetic modifier of PAH deficiency and a potential target for developing mutation-specific treatments for PKU.


Assuntos
Fenilcetonúrias/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Humanos , Lactente , Recém-Nascido , Íntrons , Splicing de RNA , Estudos Retrospectivos , Espanha
8.
Clin Genet ; 95(5): 615-626, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653653

RESUMO

The congenital disorders of glycosylation (CDG) are defects in glycoprotein and glycolipid glycan synthesis and attachment. They affect multiple organ/systems, but non-specific symptoms render the diagnosis of the different CDG very challenging. Phosphomannomutase 2 (PMM2)-CDG is the most common CDG, but advances in genetic analysis have shown others to occur more commonly than previously thought. The present work reports the clinical and mutational spectrum of 25 non-PMM2 CDG patients. The most common clinical symptoms were hypotonia (80%), motor or psychomotor disability (80%) and craniofacial dysmorphism (76%). Based on their serum transferrin isoform profile, 18 were classified as CDG-I and 7 as CDG-II. Pathogenic variations were found in 16 genes (ALG1, ALG6, ATP6V0A2, B4GALT1, CCDC115, COG7, DOLK, DPAGT1, DPM1, GFPT1, MPI, PGM1, RFT1, SLC35A2, SRD5A3, and SSR4). Overall, 27 variants were identified, 12 of which are novel. The results highlight the importance of combining genetic and biochemical analyses for the early diagnosis of this heterogeneous group of disorders.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Espanha
10.
Mol Genet Metab ; 125(3): 266-275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30274917

RESUMO

Propionic acidemia (PA) is caused by mutations in the PCCA and PCCB genes, encoding α and ß subunits, respectively, of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). Up to date, >200 pathogenic mutations have been identified, mostly missense defects. Genetic analysis in PA patients referred to the laboratory for the past 15 years identified 20 novel variants in the PCCA gene and 14 in the PCCB gene. 21 missense variants were predicted as probably disease-causing by different bioinformatics algorithms. Structural analysis in the available 3D model of the PCC enzyme indicated potential instability for most of them. Functional analysis in a eukaryotic system confirmed the pathogenic effect for the missense variants and for one amino acid deletion, as they all exhibited reduced or null PCC activity and protein levels compared to wild-type constructs. PCCB variants p.E168del, p.Q58P and p.I460T resulted in medium-high protein levels and no activity. Variants p.R230C and p.C712S in PCCA, and p.G188A, p.R272W and p.H534R in PCCB retained both partial PCC activity and medium-high protein levels. Available patients-derived fibroblasts carriers of some of these mutations were grown at 28 °C or 37 °C and a slight increase in PCC activity or protein could be detected in some cases at the folding-permissive conditions. Examination of available clinical data showed correlation of the results of the functional analysis with disease severity for most mutations, with some notable exceptions, confirming the notion that the final phenotypic outcome in PA is not easily predicted.


Assuntos
Predisposição Genética para Doença , Metilmalonil-CoA Descarboxilase/genética , Acidemia Propiônica/genética , Relação Estrutura-Atividade , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Metilmalonil-CoA Descarboxilase/química , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mutação de Sentido Incorreto/genética , Triagem Neonatal , Acidemia Propiônica/patologia , Conformação Proteica , Dobramento de Proteína , Adulto Jovem
11.
Hum Mutat ; 38(2): 160-168, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27774737

RESUMO

The congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2. This exercise identified eight compounds that increased the thermal stability of PMM2. Of these, four compounds functioned as potential PCs that significantly increased the stability of several destabilizing and oligomerization mutants and also increased PMM activity in a disease model of cells overexpressing PMM2 mutations. Structural analysis revealed one of these compounds to provide an excellent starting point for chemical optimization since it passed tests based on a number of pharmacochemical quality filters. The present results provide the first proof-of-concept of a possible treatment for PMM2-CDG and describe a promising chemical structure as a starting point for the development of new therapeutic agents for this severe orphan disease.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Alelos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Descoberta de Drogas , Ativação Enzimática , Fibroblastos/metabolismo , Genótipo , Ensaios de Triagem em Larga Escala , Humanos , Mutação com Perda de Função , Terapia de Alvo Molecular , Mutação , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/isolamento & purificação , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
12.
Hum Mutat ; 38(6): 678-691, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28244183

RESUMO

The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches.


Assuntos
Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Mutação de Sentido Incorreto/genética , Relação Estrutura-Atividade , Éxons/genética , Regulação Enzimológica da Expressão Gênica , Glicina/metabolismo , Glicina Desidrogenase (Descarboxilante)/química , Humanos , Hiperglicinemia não Cetótica/patologia , Recém-Nascido , Conformação Molecular , Fenótipo , Estabilidade Proteica
13.
Genet Med ; 19(1): 104-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362913

RESUMO

PURPOSE: The study's purpose was to delineate the genetic mutations that cause classic nonketotic hyperglycinemia (NKH). METHODS: Genetic results, parental phase, ethnic origin, and gender data were collected from subjects suspected to have classic NKH. Mutations were compared with those in the existing literature and to the population frequency from the Exome Aggregation Consortium (ExAC) database. RESULTS: In 578 families, genetic analyses identified 410 unique mutations, including 246 novel mutations. 80% of subjects had mutations in GLDC. Missense mutations were noted in 52% of all GLDC alleles, most private. Missense mutations were 1.5 times as likely to be pathogenic in the carboxy terminal of GLDC than in the amino-terminal part. Intragenic copy-number variations (CNVs) in GLDC were noted in 140 subjects, with biallelic CNVs present in 39 subjects. The position and frequency of the breakpoint for CNVs correlated with intron size and presence of Alu elements. Missense mutations, most often recurring, were the most common type of disease-causing mutation in AMT. Sequencing and CNV analysis identified biallelic pathogenic mutations in 98% of subjects. Based on genotype, 15% of subjects had an attenuated phenotype. The frequency of NKH is estimated at 1:76,000. CONCLUSION: The 484 unique mutations now known in classic NKH provide a valuable overview for the development of genotype-based therapies.Genet Med 19 1, 104-111.


Assuntos
Aminometiltransferase/genética , Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Alelos , Di-Hidrolipoamida Desidrogenase/genética , Éxons/genética , Feminino , Testes Genéticos , Genótipo , Glicina/genética , Glicina/metabolismo , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/patologia , Íntrons , Masculino , Mutação de Sentido Incorreto
14.
Genet Med ; 18(10): 1037-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26913919

RESUMO

PURPOSE: Glycogen storage disease (GSD) is an umbrella term for a group of genetic disorders that involve the abnormal metabolism of glycogen; to date, 23 types of GSD have been identified. The nonspecific clinical presentation of GSD and the lack of specific biomarkers mean that Sanger sequencing is now widely relied on for making a diagnosis. However, this gene-by-gene sequencing technique is both laborious and costly, which is a consequence of the number of genes to be sequenced and the large size of some genes. METHODS: This work reports the use of massive parallel sequencing to diagnose patients at our laboratory in Spain using either a customized gene panel (targeted exome sequencing) or the Illumina Clinical-Exome TruSight One Gene Panel (clinical exome sequencing (CES)). Sequence variants were matched against biochemical and clinical hallmarks. RESULTS: Pathogenic mutations were detected in 23 patients. Twenty-two mutations were recognized (mostly loss-of-function mutations), including 11 that were novel in GSD-associated genes. In addition, CES detected five patients with mutations in ALDOB, LIPA, NKX2-5, CPT2, or ANO5. Although these genes are not involved in GSD, they are associated with overlapping phenotypic characteristics such as hepatic, muscular, and cardiac dysfunction. CONCLUSIONS: These results show that next-generation sequencing, in combination with the detection of biochemical and clinical hallmarks, provides an accurate, high-throughput means of making genetic diagnoses of GSD and related diseases.Genet Med 18 10, 1037-1043.


Assuntos
Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Glicogênio/genética , Patologia Molecular , Adolescente , Adulto , Anoctaminas , Criança , Pré-Escolar , Canais de Cloreto/genética , Exoma/genética , Feminino , Frutose-Bifosfato Aldolase/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Mutação , Proteínas Nucleares/genética , Esterol Esterase/genética , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Adulto Jovem
15.
Hum Mutat ; 36(9): 851-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26014514

RESUMO

Congenital disorder of glycosylation type Ia (PMM2-CDG), the most common form of CDG, is caused by mutations in the PMM2 gene that reduce phosphomannomutase 2 (PMM2) activity. No curative treatment is available. The present work describes the functional analysis of nine human PMM2 mutant proteins frequently found in PMM2-CDG patients and also two murine Pmm2 mutations carried by the unique PMM2-CDG mouse model described to overcome embryonic lethality. The effects of the mutations on PMM2/Pmm2 stability, oligomerization, and enzyme activity were explored in an optimized bacterial system. The mutant proteins were associated with an enzymatic activity of up to 47.3% as compared with wild type (WT). Stability analysis performed using differential scanning fluorimetry and a bacterial transcription-translation-coupled system allowed the identification of several destabilizing mutations (p.V44A, p.D65Y, p.R123Q, p.R141H, p.R162W, p.F207S, p.T237M, p.C241S). Exclusion chromatography identified one mutation, p.P113L, that affected dimer interaction. Expression analysis of the p.V44A, p.D65Y, p.R162W, and p.T237M mutations in a eukaryotic expression system under permissive folding conditions showed the possibility of recovering their associated PMM2 activity. Together, the results suggest that some loss-of-function mutations detected in PMM2-CDG patients could be destabilizing, and therefore PMM2 activity could be, in certain cases, rescuable via the use of synergetic proteostasis modulators and/or chaperones.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Mutação , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Dobramento de Proteína , Animais , Ativação Enzimática/genética , Estabilidade Enzimática/genética , Fibroblastos , Expressão Gênica , Humanos , Camundongos , Fosfotransferases (Fosfomutases)/química , Multimerização Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
Hum Mol Genet ; 22(18): 3680-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23674520

RESUMO

Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations.


Assuntos
Alquil e Aril Transferases/genética , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Benzenoacetamidas/química , Benzenoacetamidas/farmacologia , Tioureia/análogos & derivados , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Benzenoacetamidas/administração & dosagem , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Estabilidade Enzimática , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tioureia/administração & dosagem , Tioureia/química , Tioureia/farmacologia , Vitamina B 12/administração & dosagem , Vitamina B 12/farmacologia
17.
Hum Mutat ; 35(4): 470-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24449431

RESUMO

Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention.


Assuntos
Deficiências do Desenvolvimento/genética , Doenças do Sistema Nervoso/genética , Proteínas Quinases/genética , Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/sangue , Deficiências do Desenvolvimento/dietoterapia , Fibroblastos/enzimologia , Humanos , Masculino , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/dietoterapia , Pediatria , Proteínas Quinases/deficiência
18.
Am J Hum Genet ; 89(5): 656-67, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22077971

RESUMO

We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G > T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545 + 5G > A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins.


Assuntos
Proteínas de Transporte , Doenças Mitocondriais/genética , Proteínas Mitocondriais , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae , Aminoácido Oxirredutases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromossomos Humanos Par 2/genética , Feminino , Células HeLa , Homozigoto , Humanos , Hipertensão/genética , Lactente , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Succinato Desidrogenase/metabolismo , Sulfurtransferases/metabolismo , Ácido Tióctico/metabolismo , Transferases/metabolismo
19.
Biochem Biophys Res Commun ; 452(3): 457-61, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25159844

RESUMO

Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different neurological symptoms, movement disorders and cardiac complications. There is strong evidence indicating that oxidative damage could be a pathogenic factor in neurodegenerative, mitochondrial and metabolic diseases. Recently, we identified an increase in ROS levels in PA patients-derived fibroblasts. Here, we analyze the capability of seven antioxidants to scavenge ROS production in PA patients' cells. Tiron, trolox, resveratrol and MitoQ significantly reduced ROS content in patients and controls' fibroblasts. In addition, changes in the expression of two antioxidant enzymes, superoxide dismutase and glutathione peroxidase, were observed in PA patients-derived fibroblasts after tiron and resveratrol treatment. Our results in PA cellular models establish the proof of concept of the potential of antioxidants as an adjuvant therapy for PA and pave the way for future assessment of antioxidant strategies in the murine model of PA.


Assuntos
Antioxidantes/farmacologia , Fibroblastos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Cromanos/farmacologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Metilmalonil-CoA Descarboxilase/genética , Mitocôndrias/metabolismo , Mutação , Compostos Organofosforados/farmacologia , Cultura Primária de Células , Acidemia Propiônica/genética , Acidemia Propiônica/metabolismo , Acidemia Propiônica/patologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Estilbenos/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Glutationa Peroxidase GPX1
20.
Hum Mutat ; 34(2): 355-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23086801

RESUMO

This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Doença da Urina de Xarope de Bordo/genética , Fosfoproteínas Fosfatases/genética , Apoptose , Western Blotting , Sobrevivência Celular , Análise Mutacional de DNA , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Frequência do Gene , Genótipo , Humanos , Lactente , Isoleucina/sangue , Leucina/sangue , Doença da Urina de Xarope de Bordo/diagnóstico , Microscopia de Fluorescência , Mutação , Fenótipo , Proteína Fosfatase 2C , Complexo Piruvato Desidrogenase/genética , Espécies Reativas de Oxigênio , Análise de Sequência de DNA , Pele/citologia , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA