Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 10(10): e1004686, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299392

RESUMO

As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.


Assuntos
Envelhecimento , Proteínas de Ligação a DNA/deficiência , Deficiências Nutricionais/etiologia , Endonucleases/deficiência , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Envelhecimento/genética , Animais , Encéfalo/patologia , Caquexia/etiologia , Caquexia/genética , Sistema Nervoso Central/fisiologia , Sistema Nervoso Central/fisiopatologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deficiências Nutricionais/genética , Modelos Animais de Doenças , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Fígado/patologia , Longevidade/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoporose/etiologia , Osteoporose/genética , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nat Cell Biol ; 11(5): 604-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363488

RESUMO

The accumulation of stochastic DNA damage throughout an organism's lifespan is thought to contribute to ageing. Conversely, ageing seems to be phenotypically reproducible and regulated through genetic pathways such as the insulin-like growth factor-1 (IGF-1) and growth hormone (GH) receptors, which are central mediators of the somatic growth axis. Here we report that persistent DNA damage in primary cells from mice elicits changes in global gene expression similar to those occurring in various organs of naturally aged animals. We show that, as in ageing animals, the expression of IGF-1 receptor and GH receptor is attenuated, resulting in cellular resistance to IGF-1. This cell-autonomous attenuation is specifically induced by persistent lesions leading to stalling of RNA polymerase II in proliferating, quiescent and terminally differentiated cells; it is exacerbated and prolonged in cells from progeroid mice and confers resistance to oxidative stress. Our findings suggest that the accumulation of DNA damage in transcribed genes in most if not all tissues contributes to the ageing-associated shift from growth to somatic maintenance that triggers stress resistance and is thought to promote longevity.


Assuntos
Dano ao DNA/fisiologia , Crescimento/fisiologia , Longevidade/fisiologia , Transcrição Gênica/genética , Envelhecimento/fisiologia , Estruturas Animais/metabolismo , Animais , DNA/efeitos da radiação , Reparo do DNA/fisiologia , Perfilação da Expressão Gênica , Crescimento/efeitos da radiação , Humanos , Longevidade/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Neoplasias/etiologia , Neoplasias/genética , Estresse Oxidativo/fisiologia , Progéria/genética , Progéria/metabolismo , RNA Polimerase II/metabolismo , Ratos , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Estresse Fisiológico/fisiologia , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA