RESUMO
BACKGROUND: Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. RESULTS: We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. CONCLUSION: Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.
Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Saccharum/química , Saccharum/genética , Sacarose/análise , Agricultura , Perfilação da Expressão Gênica , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. RESULTS: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. CONCLUSION: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Expressão Gênica , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Saccharum/genética , Saccharum/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Bases de Dados Genéticas , Desastres , Regulação da Expressão Gênica de Plantas/genética , Herbaspirillum , Mariposas , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/efeitos dos fármacos , Saccharum/microbiologia , Transdução de Sinais/genéticaRESUMO
Evidence of the viral etiology of sugarcane yellow leaf disease (SCYLD), occurring in southeast Brazil, was obtained by light and electron microscopy combined with serology. Light microscopy using epifluorescence illumination showed an abnormal yellow-green fluorescing material in the phloem of SCYLD-affected plants that was rarely observed in control plants. Immunolocalization in tissue-printed (or -blotted) nitrocellulose membranes, using barley yellow dwarf virus (BYDV) serotype PAV antiserum, showed a weak but clearly positive reaction in the phloem. Isometric viruslike particles of 24 to 26 nm in diameter were found by electron microscopy both in situ and in partially purified preparations. Examination of thin sections showed that phloem companion cells contained viruslike particles and presented cytological changes apparently related to the development of virus infection. Partially purified preparations produced UV absorption spectra typical of a nucleoprotein, with high absorbance at 260 nm, as expected for isometric virus particles. Virus particles were observed in extracts and partially purified preparations using immunosorbent electron microscopy with BYDV-PAV antiserum. Plate-trapped antigen enzyme-linked immunosorbent assays with the same antiserum indicate a weak serological relationship between BYDV-PAV and SCYLD-associated virus.
RESUMO
Sugarcane is generally propagated by cuttings of the stalk containing one or more lateral buds, which will develop into a new plant. The transition from the dormant into the active stage constitutes a complex phenomenon characterized by changes in accumulation of phytohormones and several other physiological aspects. Abscisic acid (ABA) and methyl-jasmonate (MeJA) are major signaling molecules, which influence plant development and stress responses. These plant regulators modulate gene expression with the participation of many transcriptional factors. Basic leucine zipper proteins (bZIPs) form a large family of transcriptional factors involved in a variety of plant physiological processes, such as development and responses to stress. Query sequences consisting of full-length protein sequence of each of the Arabidopsis bZIP families were utilized to screen the sugarcane EST database (SUCEST) and 86 sugarcane assembled sequences (SAS) coding for bZIPs were identified. cDNA arrays and RNA-gel blots were used to study the expression of these sugarcane bZIP genes during early plantlet development and in response to ABA and MeJA. Six bZIP genes were found to be differentially expressed during development. ABA and MeJA modulated the expression of eight sugarcane bZIP genes. Our findings provide novel insights into the expression of this large protein family of transcriptional factors in sugarcane.
Assuntos
Ácido Abscísico/farmacologia , Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Saccharum/genética , Sequência de Aminoácidos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Genes de Plantas/genética , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Homologia de Sequência de AminoácidosRESUMO
Transgenic plants have been used widely as expression systems of recombinant proteins in recent years. This process can be an efficient alternative for the large-scale production of proteins. In this work, we present the establishment of transgenic sugarcane expressing a His-tagged canecystatin under the control of the maize ubiquitin promoter. A number of studies have demonstrated that cystatins, which are natural inhibitors of cysteine proteinases, can be used for protection against insect attacks. A transformed sugarcane plant that presented high levels of (HIS)CaneCPI-1 expression, was selected for the purification of this protein through affinity chromatography in a nickel column. This purified (HIS)CaneCPI-1 was immunodetected using a polyclonal antibody, which was also able to detect the (HIS)CaneCPI-1 in a crude extract from transgenic plant leaves. Assays of inhibitory activity performed with the purified (HIS)CaneCPI-1 revealed its ability to inhibit the catalytic activity of midgut cysteine proteinase partially purified from the sugarcane weevil Sphenophorus levis and human cathepsin L in nanomolar order. These studies demonstrate that sugarcane is a viable expression system for recombinant protein production.
Assuntos
Cistatinas/genética , Cistatinas/isolamento & purificação , Histidina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/metabolismo , Histidina/química , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina/genética , Zea mays/genéticaRESUMO
The control of gene expression in precise time and space is a desirable attribute of chemically inducible systems. Ethanol is a chemical inducer with favourable features, such as being inexpensive and easy to apply. The aim of this study was to identify ethanol-responsive genes in sugarcane. The cDNA macroarray technique was adopted to identify transcript changes in sugarcane leaves (Saccharum spp. cv SP80-3280) exposed to ethanol. The expression profiles of sugarcane genes were analysed using nylon filters containing 3,575 cDNA clones from the leaf roll library of the SUCEST project. Seventy expressed sequence tags (ESTs) presented altered expression patterns, including ESTs corresponding to genes related to transcriptional and translational processes, abiotic stress and others. Several genes of unknown function were also identified. Among the 48 ESTs up-regulated by ethanol, an abiotic stress-responsive protein and an unknown function gene presented rapid induction by ethanol. The macroarray data of selected ethanol-responsive EST were confirmed by RNA-blot hybridisation. The expression profile of the 48 up-regulated genes was compared in two other cultivars: SP89-1115 and SP90-3414. Surprisingly, no gene showed a similar expression profile in the three cultivars. This result suggests that sugarcane plants have a high diversity in their responses to ethanol.
Assuntos
Etanol/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/genética , Saccharum/genética , Northern Blotting , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Saccharum/efeitos dos fármacosRESUMO
Transposable elements (TEs) are considered to be important components of the maintenance and diversification of genomes. The recent increase in genome sequence data has created an opportunity to evaluate the impact of these active mobile elements on the evolution of plant genomes. Analysis of the sugarcane transcriptome identified 267 clones with significant similarity to previously described plant TEs. After full cDNA sequencing, 68 sugarcane TE clones were assigned to 11 families according to their best sequence alignment against a fully characterized element. Expression was further investigated through a combined study utilizing electronic Northerns, macroarray, transient and stable sugarcane transformation. Newly synthesized cDNA probes from flower, leaf roll, apical meristem and callus tissues confirm previous results. Callus was identified as the tissue with the highest number of TEs being expressed, revealing that tissue culture drastically induced the expression of different elements. No tissue-specific family was identified. Different representatives within a TE family displayed differential expression patterns, showing that each family presented expression in almost every tissue. Transformation experiments demonstrated that most Hopscotch clone-derived U3 regions are, indeed, active promoters, although under a strong transcriptional regulation. This is a large-scale study about the expression pattern of TEs and indicates that mobile genetic elements are transcriptionally active in the highly polyploid and complex sugarcane genome.
Assuntos
Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Hibridização Genética/genética , Saccharum/genética , Transcrição Gênica/genética , Sequência de Bases , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência do Ácido NucleicoRESUMO
Summary Adopting the sequencing of expressed sequence tags (ESTs) of a sugarcane database derived from libraries induced and not induced by pathogens, we identified EST clusters homologous to genes corresponding to enzymes involved in the detoxification of reactive oxygen species. The predicted amino acids of these enzymes are superoxide dismutases (SODs), glutathione-S-transferase (GST), glutathione peroxidase (GPX), and catalases. Three MnSOD mitochondrial precursors and 10 CuZnSOD were identified in sugarcane: the MnSOD mitochondrial precursor is 96% similar to the maize MnSOD mitochondrial precursor and, of the 10 CuZnSOD identified, seven were 98% identical to maize cytosolic CuZnSOD4 and one was 67% identical to putative peroxisomal CuZnSOD from Arabidopsis. Three homologues to class Phi GST were 87-88% identical to GST III from maize. Five GPX homologues were identified: three were homologous to cytosolic GPX from barley, one was 88% identical to phospholipid hydroperoxide glutathione peroxidase (PHGPX) from rice, and the last was 71% identical to GPX from A. thaliana. Three enzymes similar to maize catalase were identified in sugarcane: two were similar to catalase isozyme 3 and catalase chain 3 from maize, which are mitochondrial, and one was similar to catalase isozyme 1 from maize, whose location is peroxisomal subcellular. All enzymes were induced in all sugarcane libraries (flower, seed, root, callus, leaves) and also in the pathogen-induced libraries, except for CuZnSOD whose cDNA was detected in none of the libraries induced by pathogens (Acetobacter diazotroficans and Herbaspirillum rubrisubalbicans). The expression of the enzymes SOD, GST, GPX, and catalases involved in the detoxification was examined using reverse transcriptase-polymerase chain reaction in cDNA from leaves of sugarcane under biotic stress conditions, inoculated with Puccinia melanocephala, the causal agent of sugarcane rust disease.
RESUMO
Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1,536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp. cv SP80-3280) exposed to cold for 3 to 48 h. Thirty-four cold-inducible ESTs were identified, of which 20 were novel cold-responsive genes that had not previously been reported as being cold inducible, including cellulose synthase, ABI3-interacting protein 2, a negative transcription regulator, phosphate transporter, and others, as well as several unknown genes. In addition, 25 ESTs were identified as being down-regulated during cold exposure. Using a database of cold-regulated proteins reported for other plants, we searched for homologs in the sugarcane EST project database (SUCEST), which contains 263,000 ESTs. Thirty-three homologous putative cold-regulated proteins were identified in the SUCEST database. On the basis of the expression profiles of the cold-inducible genes and the data-mining results, we propose a molecular model for the sugarcane response to low temperature.