Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2122183119, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36136968

RESUMO

Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.

2.
Chem Soc Rev ; 52(18): 6230-6253, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37551138

RESUMO

Electron, proton, and proton-coupled electron transfer (PCET) are crucial elementary processes in chemistry, electrochemistry, and biology. We provide here a gentle overview of retrospective and currently developing theoretical formalisms of chemical, electrochemical and biological molecular charge transfer processes, with examples of how to bridge electron, proton, and PCET theory with experimental data. We offer first a theoretical minimum of molecular electron, proton, and PCET processes in homogeneous solution and at electrochemical interfaces. We illustrate next the use of the theory both for simple electron transfer processes, and for processes that involve molecular reorganization beyond the simplest harmonic approximation, with dissociative electron transfer and inclusion of all charge transfer parameters. A core example is the electrochemical reduction of the S2O82- anion. This is followed by discussion of core elements of proton and PCET processes and the electrochemical dihydrogen evolution reaction on different metal, semiconductor, and semimetal (say graphene) electrode surfaces. Other further focus is on stochastic chemical rate theory, and how this concept can rationalize highly non-traditional behaviour of charge transfer processes in mixed solvents. As a second major area we address ("long-range") chemical and electrochemical electron transfer through molecular frameworks using notions of superexchange and hopping. Single-molecule and single-entity electrochemistry are based on electrochemical scanning probe microscopies. (In operando) scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) are particularly emphasized, with theoretical notions and new molecular electrochemical phenomena in the confined tunnelling gap. Single-molecule surface structure and electron transfer dynamics are illustrated by self-assembled thiol molecular monolayers and by more complex redox target molecules. This discussion also extends single-molecule electrochemistry to bioelectrochemistry of complex redox metalloproteins and metalloenzymes. Our third major area involves computational overviews of molecular and electronic structure of the electrochemical interface, with new computational challenges. These relate to solvent dynamics in bulk and confined space (say carbon nanostructures), electrocatalysis, metallic and semiconductor nanoparticles, d-band metals, carbon nanostructures, spin catalysis and "spintronics", and "hot" electrons. Further perspectives relate to metal-organic frameworks, chiral surfaces, and spintronics.

3.
Nano Lett ; 22(12): 4854-4860, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639869

RESUMO

New nanostructures often reflect new and exciting properties. Here, we present an two-dimensional, hitherto unreported PdO square network with lateral dimensions up to hundreds of nanometers growing on reduced graphene oxide (rGO), forming a hybrid nanofilm. An intermediate state of dissolved Pd(0) in the bacterium S. oneidensis MR-1 is pivotal in the biosynthesis and inspires an abiotic synthesis. The PdO network shows a lattice spacing of 0.5 nm and a thickness of 1.8 nm on both sides of an rGO layer and is proposed to be cubic or tetragonal crystal, as confirmed by structural simulations. A 2D silver oxide analog with a similar structure is also obtained using an analogous abiotic synthesis. Our study thus opens a simple route to a whole new class of 2D metal oxides on rGO as promising candidates for graphene superlattices with unexplored properties and potential applications for example in electronics, sensing, and energy conversion.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Paládio/química
4.
Proc Natl Acad Sci U S A ; 116(9): 3407-3412, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30737288

RESUMO

Electron transfer reactions can now be followed at the single-molecule level, but the connection between the microscopic and macroscopic data remains to be understood. By monitoring the conductance of a single molecule, we show that the individual electron transfer reaction events are stochastic and manifested as large conductance fluctuations. The fluctuation probability follows first-order kinetics with potential dependent rate constants described by the Butler-Volmer relation. Ensemble averaging of many individual reaction events leads to a deterministic dependence of the conductance on the external electrochemical potential that follows the Nernst equation. This study discloses a systematic transition from stochastic kinetics of individual reaction events to deterministic thermodynamics of ensemble averages and provides insights into electron transfer processes of small systems, consisting of a single molecule or a small number of molecules.

5.
Small ; 17(47): e2103461, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672082

RESUMO

Photothermal therapy requires efficient plasmonic nanomaterials with small size, good water dispersibility, and biocompatibility. This work reports a one-pot, 2-min synthesis strategy for ultrathin CuS nanocrystals (NCs) with precisely tunable size and localized surface plasmon resonance (LSPR), where a single-starch-layer coating leads to a high LSPR absorption at the near-IR wavelength 980 nm. The CuS NC diameter increases from 4.7 (1 nm height along [101]) to 28.6 nm (4.9 nm height along [001]) accompanied by LSPR redshift from 978 to 1200 nm, as the precursor ratio decreases from 1 to 0.125. Photothermal temperature increases by 38.6 °C in 50 mg L-1 CuS NC solution under laser illumination (980 nm, 1.44 W cm-2 ). Notably, 98.4% of human prostate cancer PC-3/Luc+ cells are killed by as little as 5 mg L-1 starch-coated CuS NCs with 3-min laser treatment, whereas CuS NCs without starch cause insignificant cell death. LSPR modeling discloses that the starch layer enhances the photothermal effect by significantly increasing the free carrier density and blue-shifting the LSPR toward 980 nm. This study not only presents a new type of photothermally highly efficient ultrathin CuS NCs, but also offers in-depth LSPR modeling investigations useful for other photothermal nanomaterial designs.


Assuntos
Nanopartículas , Terapia Fototérmica , Cobre , Humanos , Masculino , Amido
6.
J Am Chem Soc ; 142(24): 10646-10658, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32432870

RESUMO

Electrochemical electron transfer (ET) of transition metal complexes or redox metalloproteins can be catalyzed by more than an order of magnitude by molecular scale metallic nanoparticles (NPs), often rationalized by concentration enhancement of the redox molecules in the interfacial region, but collective electronic AuNP array effects have also been forwarded. Using DFT combined with molecular electrochemical ET theory we explore here whether a single molecular scale Au nanocluster (AuC) between a Au (111) surface and the molecular redox probe ferrocene/ferricinium (Fc/Fc+) can trigger an ET rate increase. Computational challenges limit us to AunCs (n up to 147), which are smaller than most electrocatalytic AuCs studied experimentally. AuC-coating thiols are addressed both as adsorption of two S atoms at the structural Au55 bridge sites and as superexchange of variable-size AuCs via a single six-carbon alkanethiyl bridge. Our results are guiding, but enable comparing many AuC surface details (apex, ridge, face, direct vs superexchange ET) with a planar Au(111) surface. The rate-determining electronic transmission coefficients for ET between Fc/Fc+ and AuC are highly sensitive to subtle AuC electronic features. The transmission coefficients mostly compete poorly with direct Fc/Fc+ ET at the Au(111) surface, but Fc/Fc+ 100 face-bound on Au79 and Au147 and ridge bound on Au19 leads to a 2- or 3-fold rate enhancement, in different distance ranges. Single AuCs can thus indeed cause rate enhancement of simple electrochemical ET, but additional, possibly collective AuNC effects, as well as larger clusters and more complete coating layers, also need to be considered.

7.
Proc Natl Acad Sci U S A ; 113(11): E1424-33, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929334

RESUMO

The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)-thiyl, with Au(I)-thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)-thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s-d hybridization and charge polarization effects that perturbatively mix in some Au(I)-thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)-thiolate involvement. Predictions that Brust-Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)-thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established.

8.
Langmuir ; 34(12): 3610-3618, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29510058

RESUMO

Metalloporphyrins are active sites in metalloproteins and synthetic catalysts. They have also been studied extensively by electrochemistry as well as being prominent targets in electrochemical scanning tunneling microscopy (STM). Previous studies of FePPIX adsorbed on graphite and alkylthiol modified Au electrodes showed a pair of reversible Fe(III/II)PPIX peaks at about -0.41 V (vs NHE) at high solution pH. We recently used iron protoporphyrin IX (FePPIX) as an intercalating probe for long-range electrochemical electron transfer through a G-quadruplex oligonucleotide (DNAzyme); this study disclosed two, rather than a single pair of voltammetric peaks with a new and dominating peak, shifted 200 mV positive relative to the ≈-0.4 V peak. Prompted by this unexpected observation, we report here a study of the voltammetry of FePPIX itself on single-crystal Au(111), (100), and (110) and polycrystalline Au electrode surfaces. In all cases the dominating pair of new Fe(III/II)PPIX redox peaks, shifted positively by more than 200 mV compared to those of previous studies appeared. This observation is supported by density functional theory (DFT) which shows that strong dispersion forces in the FePPIX/Au electronic interaction drive the midpoint potential toward positive values. The FePPIX spin states depend on interaction with the Au(111) interface, converting all the Fe(II)/(III)PPIX species into low-spin states. These results support electrochemical evidence for the nature of the electronic coupling between FePPIX and Au-surfaces, and the electronic states of adsorbate molecules, with a bearing also on recent reports of magnetic FePPIX/Au(111) interactions in ultrahigh vacuum (UHV).

9.
Macromol Rapid Commun ; 39(12): e1800125, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29709102

RESUMO

Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self-assembly of block copolymer. 3-Aminophenol (AP) and formaldehyde (F) polymerize and self-assemble with cylindrical PS-b-PEO micelles into worm-like PS-b-PEO@APF composites with uniform diameter (49 ± 3 nm). After template extraction, worm-like APF polymer nanotubes are formed. The structure and morphology of the polymer nanotubes can be tuned by regulating the synthesis conditions. Furthermore, PS-b-PEO@APF composites are uniformly converted to isomorphic carbon nanotubes with large surface area of 662 m2 g-1 , abundant hierarchical porous frameworks and nitrogen doping. The synthesis can be extended to silica nanotubes. These findings open an avenue to the design of porous materials with controlled structural framework, composition, and properties for a wide range of applications.


Assuntos
Aminofenóis/química , Formaldeído/química , Nanotubos de Carbono/química , Polietilenoglicóis/química , Polímeros/química , Poliestirenos/química , Micelas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Polímeros/síntese química , Porosidade , Dióxido de Silício/química
10.
Anal Chem ; 93(18): 7148-7149, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33904729

Assuntos
Glucose Oxidase
11.
Faraday Discuss ; 193: 99-112, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722546

RESUMO

DNA quadruplexes (qs) are a class of "non-canonical" oligonucleotides (OGNs) composed of stacked guanine (G) quartets stabilized by specific cations. Metal porphyrins selectively bind to G-qs complexes to form what is known as DNAzyme, which can exhibit peroxidase and other catalytic activity similar to heme group metalloenzymes. In the present study we investigate the electrochemical properties and the structure of DNAzyme monolayers on single-crystal Au(111)-electrode surfaces using cyclic voltammetry and scanning tunnelling microscopy under electrochemical potential control (in situ STM). The target DNAzyme is formed from a single-strand OGN with 12 guanines and iron(iii) porphyrin IX (hemin), and assembles on Au(111) through a mercapto alkyl linker. The DNAzyme monolayers exhibit a strong pair of redox peaks at 0.0 V (NHE) at pH 7 in acetate buffer, shifted positively by about 50 mV compared to free hemin weakly physisorbed on the Au(111)-electrode surface. The voltammetric hemin signal of DNAzyme is enhanced 15 times compared with that of hemin adsorbed directly on the Au(111)-electrode surface. This is indicative of both the formation of a close to dense DNAzyme monolayer and that hemin is strongly bound to the immobilized 12G-qs in well-defined orientation favorable for interfacial ET with a rate constant of 6.0 ± 0.4 s-1. This is supported by in situ STM which discloses single-molecule G-quartet structures with a size of 1.6 ± 0.2 nm.


Assuntos
DNA Catalítico/química , Quadruplex G , Hemina/química , Substâncias Intercalantes/química , Técnicas Eletroquímicas , Eletrodos , Compostos Férricos , Ouro
12.
Faraday Discuss ; 193: 113-131, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722353

RESUMO

Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this work we present evidence that, for a family of conjugated, redox-active metal complexes, hopping may be a significant factor for even the shortest molecule studied (ca. 1 nm between contact atoms). The length dependence of conductance for two series of such complexes which differ essentially in the number of conjugated 1,4-C6H4- rings in the structures has been studied, and it is found that the junction conductances vary linearly with molecular length, consistent with a hopping mechanism, whereas there is significant deviation from linearity in plots of log(conductance) vs. length that would be characteristic of tunnelling, and the slopes of the log(conductance)-length plots are much smaller than expected for an oligophenyl system. Moreover, the conductances of molecular junctions involving the redox-active molecules, [M(pyterpy)2]2+/3+ (M = Co, Fe) have been studied as a function of electrochemical potential in ionic liquid electrolyte, and the conductance-overpotential relationship is found to fit well with the Kuznetsov-Ulstrup relationship, which is essentially a hopping description.

13.
Inorg Chem ; 55(18): 9335-45, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588329

RESUMO

Outer-sphere electron transfer (ET) between optically active transition-metal complexes and either other transition-metal complexes or metalloproteins is a prototype reaction for kinetic chirality. Chirality as the ratio between bimolecular rate constants of two enantiomers mostly amounts to 1.05-1.2 with either the Λ or Δ form the more reactive, but the origin of chirality in ET parameters such as work terms, electronic transmission coefficient, and nuclear reorganization free energy has not been addressed. We report a study of ET between the Λ-/Δ-[Co(Ox)3](3-) pair (Ox = oxalate) and horse heart cytochrome c (cyt c). This choice is prompted by strong ion-pair formation that enables separation into inter-reactant interaction (chiral "recognition") and ET within the ion pair ("stereoselectivity"). Chiral selectivity was first addressed experimentally. Λ-[Co(Ox)3](3-) was found to be both the more strongly bound and faster reacting enantiomer expressed respectively by the ion-pair formation constant KX and ET rate constant kET(X) (X = Λ and Δ), with KΛ/KΔ and kET(Λ)/kET(Δ) both ≈1.1-1.2. rac-[Co(Ox)3](3-) behavior is intermediate between those of Λ- and Δ-[Co(Ox)3](3-). Chirality was next analyzed by quantum-mechanical ET theory combined with density functional theory and statistical mechanical computations. We also modeled the ion pair K(+)·[Co(Ox)3](3-) in order to address the influence of the solution ionic strength. The complex structure of cyt c meant that this reactant was represented solely by the heme group including the chiral axial ligands L-His and L-Met. Both singlet and triplet hemes as well as hemes with partially deprotonated propionic acid side groups were addressed. The computations showed that the most favorable inter-reactant configuration involved a narrow distance and orientation space very close to the contact distance, substantiating the notion of a reaction complex and the equivalence of the binding constant to a bimolecular reaction volume. The reaction is significantly diabatic even at these short inter-reactant distances, with electronic transmission coefficients κel(X) = 10(-3)-10(-2). The computations demonstrated chirality in both KX and κel(X) but no chirality in the reorganization and reaction free energy (driving force). As a result of subtle features in both KX and κel(X) chirality, the "operational" chirality κET(Λ)KΛ/κET(Δ)KΔ emerges larger than unity (1.1-1.2) from the molecular modeling as in the experimental data.


Assuntos
Cobalto/metabolismo , Complexos de Coordenação/metabolismo , Citocromos c/metabolismo , Ácido Oxálico/metabolismo , Animais , Cobalto/química , Complexos de Coordenação/química , Citocromos c/química , Transporte de Elétrons , Heme/química , Heme/metabolismo , Cavalos , Cinética , Modelos Moleculares , Ácido Oxálico/química , Oxirredução , Estereoisomerismo
14.
J Am Chem Soc ; 137(45): 14319-28, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26488257

RESUMO

Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media.

15.
Chemphyschem ; 16(5): 928-32, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25648513

RESUMO

In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%).


Assuntos
Ouro/química , Compostos de Sulfidrila/química , Adsorção , Microscopia de Tunelamento , Simulação de Dinâmica Molecular , Tamanho da Partícula , Estereoisomerismo , Propriedades de Superfície
16.
J Am Chem Soc ; 136(49): 17087-94, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25407476

RESUMO

The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS(•)Au(0)S(•)R or involves direct binding of RS(•) to face-centered-cubic or hexagonal-close-packed sites. Binding as RS(•) produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS(•) also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs.


Assuntos
Ouro/química , Compostos Organoáuricos/síntese química , Compostos de Sulfidrila/química , Compostos Organoáuricos/química , Tamanho da Partícula , Teoria Quântica , Estereoisomerismo , Propriedades de Superfície
17.
Langmuir ; 30(49): 14868-76, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25426950

RESUMO

The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded by both conducting probe-atomic force microscopy (CP-AFM) and scanning tunneling microscopy (STM). Similar measurements were performed for phenylene SAMs with thiol anchoring groups as references. It was found that, despite the presence of a sp(3) hybridized carbon atom in the conduction path, the TATA platform displays a contact resistance only slightly larger than the thiols. This surprising finding has not been reported before and was analyzed by theoretical computations of the transmission functions of the TATA anchored molecular wires. The relatively low contact resistance of the TATA platform along with its high stability and directionality make this binding group very attractive for molecular electronic measurements and devices.

18.
Biosens Bioelectron ; 246: 115890, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048721

RESUMO

Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Eletrônica
19.
Chemphyschem ; 14(10): 2101-11, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23788363

RESUMO

We have briefly overviewed recent efforts in the electrochemistry of single transition metal complex, redox metalloprotein, and redox-marked oligonucleotide (ON) molecules. We have particularly studied self-assembled molecular monolayers (SAMs) of several 5'-C6-SH single- (ss) and double-strand (ds) ONs immobilized on Au(111) electrode surfaces via Au-S bond formation, using a combination of nucleic acid chemistry, electrochemistry and electrochemically controlled scanning tunnelling microscopy (in situ STM). Ds ONs stabilized by multiply charged cations and locked nucleic acid (LNA) monomers have been primary targets, with a view on stabilizing the ds-ONs and improving voltammetric signals of intercalating electrochemical redox probes. Voltammetric signals of the intercalator anthraquinone monosulfonate (AQMS) at ds-DNA/Au(111) surfaces diluted by mercaptohexanol are significantly sharpened and more robust in the presence than in the absence of [Co(NH3)6](3+). AQMS also displays robust Faradaic voltammetric signals specific to the ds form on binding to similar LNA/Au(111) surfaces, but this signal only evolves after successive voltammetric scanning into negative potential ranges. Triply charged spermidine (Spd) invokes itself a strong voltammetric signal, which is specific to the ds form and fully matched sequences. This signal is of non-Faradaic, capacitive origin but appears in the same potential range as the Faradaic AQMS signal. In situ STM shows that molecular scale structures of the size of Spd-stabilized ds-ONs are densely packed over the Au(111) surface in potential ranges around the capacitive peak potential.


Assuntos
DNA/química , Técnicas Eletroquímicas , Ouro/química , Metaloproteínas/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
20.
Chemphyschem ; 14(5): 952-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23401384

RESUMO

Redox reactions of solvated molecular species at gold-electrode surfaces modified by electrochemically inactive self-assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au-alkanedithiol-NP-molecule hybrid entity. The NP appears to relay long-range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface-confined 6-(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak-to-peak separation for NPs in the order Au

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA