Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(17): 6776-6798, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071722

RESUMO

99Technetium (99Tc) is a hazardous radionuclide that poses a serious environmental threat. The wide variation and complex chemistries of liquid nuclear waste streams containing 99Tc often create unique, site specific challenges when sequestering and immobilizing the waste in a matrix suitable for long-term storage and disposal. Therefore, an effective management plan for 99Tc containing liquid radioactive wastes (such as storage (tanks) and decommissioned wastes) will likely require a variety of suitable materials/matrixes capable of adapting to and addressing these challenges. In this review, we discuss and highlight the key developments for effective removal and immobilization of 99Tc liquid waste in inorganic waste forms. Specifically, we review the synthesis, characterization, and application of materials for the targeted removal of 99Tc from (simulated) waste solutions under various experimental conditions. These materials include (i) layered double hydroxides (LDHs), (ii) metal-organic frameworks (MOFs), (iii) ion-exchange resins (IERs) as well as cationic organic polymers (COPs), (iv) surface modified natural clay materials (SMCMs), and (v) graphene-based materials (GBMs). Second, we discuss some of the major and recent developments toward 99Tc immobilization in (i) glass, (ii) cement, and (iii) iron mineral waste forms. Finally, we present future challenges that need to be addressed for the design, synthesis, and selection of suitable matrixes for the efficient sequestration and immobilization of 99Tc from targeted wastes. The purpose of this review is to inspire research on the design and application of various suitable materials/matrixes for selective removal of 99Tc present globally in different radioactive wastes and its immobilization in stable/durable waste forms.


Assuntos
Resíduos Radioativos , Resíduos Radioativos/análise , Minerais , Argila , Tecnécio
2.
Environ Sci Technol ; 55(13): 8642-8653, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132538

RESUMO

Cast Stone has been developed to immobilize a fraction of radioactive waste at the Hanford Site; however, constituents of potential concern (COPCs) can be released when in contact with water during disposal. Herein, a representative mineral and parameter set for geochemical speciation modeling was developed for Cast Stone aged in inert and oxic environments, to simulate leaching concentrations of major and trace constituents. The geochemical speciation model was verified using a monolithic diffusion model in conjunction with independent monolithic diffusion test results. Eskolaite (Cr2O3) was confirmed as the dominant mineral retaining Cr in Cast Stone doped with 0.1 or 0.2 wt % Cr. The immobilization of Tc as a primary COPC in Cast Stone was evaluated, and the redox states of porewater within monolithic Cast Stone indicated by Cr are insufficient for the reduction of Tc. However, redox states provided by blast furnace slag (BFS) within the interior of Cast Stone are capable of reducing Tc for immobilization, with the immobilization reaction rate postulated to be controlled by the diffusive migration of soluble Tc in porewater to the surface of reducing BFS particles. Aging in oxic conditions increased the flux of Cr and Tc from monolithic Cast Stone.


Assuntos
Resíduos Radioativos , Cromo/análise , Oxirredução , Resíduos Radioativos/análise , Água
3.
Environ Sci Technol ; 54(10): 6031-6042, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32364719

RESUMO

Uranyl phosphate minerals represent an important secondary source of uranium release at contaminated sites. In flow-through column experiments with background porewater (BPW) of typical freshwater aquifer composition (pH 7.0, ∼0.2 mM total carbonate (TC)), dissolution of K-ankoleite (KUO2PO4·3H2O), Na-autunite (NaUO2PO4·3H2O), and Ca-autunite (Ca(UO2)2(PO4)2·6H2O) was controlled by mineral solubility at steady-state U release. Effluent concentrations indicated exchange with BPW cations, and postreaction characterization showed alteration of the initial mineral composition, changes in structure (decreased crystallinity, increased disorder, and distortion of U-P mineral sheets) and possible neoformation of phases of similar structure. Increasing the BPW pH and TC to 8.1-8.2 and 2.2-3.7 mM, respectively, resulted in mineral undersaturation and produced ca. 2 orders-of-magnitude higher U and P release without reaching steady state. Minerals incorporated less BPW cations into their structures compared to low carbonate BPW experiments but showed structural disorder and distortion. Faster dissolution rates were attributed to the formation of binary and ternary uranyl carbonate complexes that accelerate the rate-determining step of uranyl detachment from the uranyl-phosphate layered structure. Calculated dissolution rates (log Rs between -8.95 and -10.32 mol m-2 s-1), accounting for reaction and transport in porous media, were similar to dissolution rates of other classes of uranyl minerals. In undersaturated solutions, dissolution rates for uranyl phosphate, oxyhydroxide, and silicate minerals can be predicted within 1-2 orders-of-magnitude from pH ∼5-10 on the basis of pH/carbonate concentration.


Assuntos
Urânio , Poluentes Radioativos da Água/análise , Carbonatos , Concentração de Íons de Hidrogênio , Minerais , Fosfatos , Porosidade , Solubilidade , Compostos de Urânio
4.
Environ Sci Technol ; 54(21): 13651-13660, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33079526

RESUMO

Understanding colloid transport in subsurface environments is challenging because of complex interactions among colloids, groundwater, and porous media over several length scales. Here, we report a versatile method to assemble bead-based microfluidic porous media analogues with chemical heterogeneities of different configurations. We further study the transport of colloidal particles through a family of porous media analogues that are randomly packed with oppositely charged beads with different mixing ratios. We recorded the dynamics of colloidal particle deposition at the level of single grains. From these, the maximum surface coverage (θmax = 0.051) was measured directly. The surface-blocking function and the deposition coefficient (kpore = 3.56 s-1) were obtained. Using these pore-scale parameters, the transport of colloidal particles was modeled using a one-dimensional advection-dispersion-deposition equation under the assumption of irreversible adsorption between oppositely charged beads and colloids, showing very good agreement with experimental breakthrough curves and retention profiles at the scale of the entire porous medium analogue. This work presents a new approach to fabricate chemically heterogeneous porous media in a microfluidic device that enables the direct measurement of pore-scale colloidal deposition. Compared with the conventional curve-fitting method for deposition constant, our approach allows quantitative prediction of colloidal breakthrough and retention via coupling of direct pore-scale measurements and an advection-dispersion-deposition model.


Assuntos
Coloides , Água Subterrânea , Adsorção , Porosidade
5.
Environ Geochem Health ; 41(1): 411-425, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29796958

RESUMO

Batch adsorption, batch diffusion, and flow-through column experiments were conducted using groundwater and fractured rock collected in unsaturated zone to increase our understanding of sorption and transport behavior of radionuclides. Increasing Kd values were observed in the sequence 90Sr, 99Tc, and 3H regardless of the geological media tested. For all sorbing radionuclides, Kd values for the fracture-filling/coating material were observed to be higher than those for without fracture-filling/coating material regardless of the groundwater. These higher Kd values are the result of zeolite mineral in filling/coating material of fractured rock. The batch diffusion and flow-through column experiments were also conducted using the same fractured rock sample, and the results of diffusion and column experiments showed similar trend of radionuclide sorption and transport to sorption experiment. In this study, sorption Kd of radionuclide was determined and used to increase our understanding of radionuclide retardation through fracture-filling/coating materials.


Assuntos
Fenômenos Geológicos , Resíduos Radioativos , Radioisótopos/química , Eliminação de Resíduos/métodos , Adsorção , Difusão , Modelos Teóricos , República da Coreia , Movimentos da Água , Zeolitas/química
6.
Environ Sci Technol ; 52(20): 11752-11759, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30221934

RESUMO

Here, Cr(VI) effects on Tc-immobilization by Fe(OH)2(s) are investigated while assessing Fe(OH)2(s) as a potential treatment method for Hanford low-activity waste destined for vitrification. Batch studies using simulated low-activity waste indicate that Tc(VII) and Cr(VI) removal is contingent on reduction to Tc(IV) and Cr(III). Furthermore, complete removal of both Cr and Tc depends on the amount of Fe(OH)2(s) present, where complete Cr and Tc removal requires more Fe(OH)2(s) (∼200 g/L of simulant), than removing Cr alone (∼50 g/L of simulant). XRD analysis suggests that Fe(OH)2(s) reaction and transformation in the simulant produces mostly goethite (α-FeOOH), where Fe(OH)2(s) transformation to goethite rather than magnetite is likely due to the simulant chemistry, which includes high levels of nitrite and other constituents. Once reduced, a fraction of Cr(III) and Tc(IV) substitute for octahedral Fe(III) within the goethite crystal lattice as supported by XPS, XANES, and/or EXAFS results. The remaining Cr(III) forms oxide and/or hydroxide phases, whereas Tc(IV) not fully incorporated into goethite persists as either adsorbed or partially incorporated Tc(IV)-oxide species. As such, to fully incorporate Tc(IV) into the goethite crystal structure, additional Fe(OH)2(s) (>200 g/L of simulant) may be required.


Assuntos
Cromo , Compostos Férricos , Animais , Hidróxidos , Oxirredução , Suínos
7.
Environ Sci Technol ; 51(19): 11011-11019, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884577

RESUMO

The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.


Assuntos
Sedimentos Geológicos/química , Minerais/química , Fosfatos/química , Resíduos Radioativos/análise , Compostos de Urânio/química , Urânio/química , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Poluentes Radioativos da Água/análise , Tempo (Meteorologia)
8.
Environ Sci Technol ; 51(15): 8635-8642, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695732

RESUMO

Technetium (Tc) remains a priority remediation concern due to persistent challenges, including mobilization due to rapid reoxidation of immobilized Tc, and competing comingled contaminants, e.g., Cr(VI), that inhibit Tc(VII) reduction and incorporation into stable mineral phases. Here Fe(OH)2(s) is investigated as a comprehensive solution for overcoming these challenges, by serving as both the reductant, (Fe(II)), and the immobilization agent to form Tc-incorporated magnetite (Fe3O4). Trace metal analysis suggests removal of Tc(VII) and Cr(VI) from solution occurs simultaneously; however, complete removal and reduction of Cr(VI) is achieved earlier than the removal/reduction of comingled Tc(VII). Bulk oxidation state analysis of the final magnetite solid phase by XANES shows that the majority of Tc is Tc(IV), which is corroborated by XPS measurements. Furthermore, EXAFS results show successful, albeit partial, Tc(IV) incorporation into magnetite octahedral sites. Cr XPS analysis indicates reduction to Cr(III) and the formation of a Cr-incorporated spinel, Cr2O3, and Cr(OH)3 phases. Spinel (modeled as Fe3O4), goethite (α-FeOOH), and feroxyhyte (δ-FeOOH) are detected in all reacted final solid phase samples analyzed by XRD. Incorporation of Tc(IV) has little effect on the spinel lattice structure. Reaction of Fe(OH)2(s) in the presence of Cr(III) results in the formation of a spinel phase that is a solid solution between magnetite (Fe3O4) and chromite (FeCr2O4).


Assuntos
Cromo/química , Poluentes Ambientais/química , Compostos Férricos/química , Tecnécio/química , Compostos de Ferro , Minerais , Oxirredução
9.
Langmuir ; 32(36): 9342-50, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27548505

RESUMO

Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.

10.
Environ Sci Technol ; 50(10): 5216-24, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27049925

RESUMO

Iron oxides and oxyhydroxides play an important role in minimizing the mobility of redox-sensitive elements in engineered and natural environments. For the radionuclide technetium-99 (Tc), these phases hold promise as primary hosts for increasing Tc loading into glass waste form matrices, or as secondary sinks during the long-term storage of nuclear materials. Recent experiments show that the inverse spinel, magnetite [Fe(II)Fe(III)2O4], can incorporate Tc(IV) into its octahedral sublattice. In that same class of materials, trevorite [Ni(II)Fe(III)2O4] is also being investigated for its ability to host Tc(IV). However, questions remain regarding the most energetically favorable charge-compensation mechanism for Tc(IV) incorporation in each structure, which will affect Tc behavior under changing waste processing or storage conditions. Here, quantum-mechanical methods were used to evaluate incorporation energies and optimized lattice bonding environments for three different, charge-balanced Tc(IV) incorporation mechanisms in magnetite and trevorite (∼5 wt % Tc). For both phases, the removal of two octahedral Fe(II) or Ni(II) ions upon the addition of Tc(IV) in an octahedral site is the most stable mechanism, relative to the creation of octahedral Fe(III) defects or increasing octahedral Fe(II) content. Following hydration-energy corrections, Tc(IV) incorporation into magnetite is energetically favorable while an energy barrier exists for trevorite.


Assuntos
Compostos Férricos/química , Tecnécio/química , Óxido Ferroso-Férrico/química , Oxirredução
11.
Environ Sci Technol ; 50(12): 6180-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27203125

RESUMO

X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.


Assuntos
Dióxido de Carbono/química , Materiais de Construção , Sequestro de Carbono , Permeabilidade , Microtomografia por Raio-X
12.
Anal Chem ; 87(17): 9054-60, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26270580

RESUMO

This paper presents a new approach for liquid scintillation counting (LSC) analysis of single-radionuclide samples containing appreciable organic or inorganic quench. This work offers better analytical results than existing LSC methods for technetium-99 ((99g)Tc) analysis with significant savings in analysis cost and time. The method was developed to quantify (99g)Tc in environmental liquid and urine samples using LSC. Method efficiency was measured in the presence of 1.9 to 11 900 ppm total dissolved solids. The resultant quench curve proved to be effective for quantifying spiked (99g)Tc activity in deionized water, tap water, groundwater, seawater, and urine samples. Counting efficiency was found to be 91.66% for Ultima Gold LLT (ULG-LLT) and Ultima Gold (ULG). Relative error in spiked (99g)Tc samples was ±3.98% in ULG and ULG-LLT cocktails. Minimum detectable activity was determined to be 25.3 and 22.7 mBq for ULG-LLT and ULG cocktails, respectively. A preconcentration factor of 1000 was achieved at 100 °C for 100% chemical recovery.


Assuntos
Compostos Radiofarmacêuticos/análise , Contagem de Cintilação , Tecnécio/análise , Poluentes Radioativos da Água/análise , Rios/química
13.
Environ Sci Technol ; 49(22): 13699-707, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26513333

RESUMO

During the processing of low-activity radioactive waste to generate solid waste forms (e.g., glass), technetium-99 (Tc) is of concern because of its volatility. A variety of materials are under consideration to capture Tc from waste streams, including the iron oxyhydroxide, goethite (α-FeOOH), which was experimentally shown to sequester Tc(IV). This material could ultimately be incorporated into glass or alternative low-temperature waste form matrices. However, questions remain regarding the incorporation mechanism for Tc(IV) in goethite, which has implications for predicting the long-term stability of Tc in waste forms under changing conditions. Here, quantum-mechanical calculations were used to evaluate the energy of five different charge-compensated Tc(IV) incorporation scenarios in goethite. The two most stable incorporation mechanisms involve direct substitution of Tc(IV) onto Fe(III) lattice sites and charge balancing either by removing one nearby H(+) (i.e., within 5 Å) or by creating an Fe(III) vacancy when substituting 3 Tc(IV) for 4 Fe(III), with the former being preferred over the latter relative to gas-phase ions. When corrections for hydrated references phases are applied, the Fe(III)-vacancy mechanism becomes more energetically competitive. Calculated incorporation energies and optimized bond lengths are presented. Proton movement is observed to satisfy undercoordinated bonds surrounding Fe(III)-vacancies in the goethite structure.


Assuntos
Compostos de Ferro/química , Minerais/química , Resíduos Radioativos , Tecnécio/química , Compostos Férricos/química , Modelos Teóricos , Oxirredução , Prótons , Teoria Quântica , Temperatura
14.
Water Environ Res ; 87(8): 675-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26237682

RESUMO

This study aimed to determine whether catalytic pretreatment can be used as a method to reduce the amount of wastewater sludge. In this study, H2O2 oxidation in the presence of a heterogeneous Fe/MgO catalyst was added to the pretreatment step. Initially a laboratory-scale test showed a TCOD (total chemical oxygen demand) was reduced 27.4% during catalytic oxidation compared to 2.1% in a catalyst-free option. Catalytic pretreatment was then evaluated in a bench-scale flow-loop test. Two bench systems were composed of identical serial processes that included anaerobic digestion, aerobic digestion, and coagulating sedimentation. The only difference between the two processes was whether catalytic pretreatment of sediment sludge was used or not. Results showed that catalyst-free oxidation TCOD gradually increased from 4200 to 7800 mg/L while catalytic oxidation maintained TCOD values at 4200 ± 200 mg/L. In addition, catalytic pretreatment reduced total nitrogen from 46.9 to 41.0 mg/L and phosphate from 3.1 to 2.3 mg/L.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Óxido de Magnésio/química , Esgotos/química , Gerenciamento de Resíduos/métodos , Catálise , Oxirredução , Solubilidade
15.
Environ Sci Technol ; 48(16): 9684-91, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25090368

RESUMO

Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.


Assuntos
Bentonita/química , Temperatura Alta , Iodetos/efeitos da radiação , Compostos de Amônio Quaternário/química , Adsorção , Surfactantes Pulmonares , Tensoativos/química
16.
Environ Sci Technol ; 48(11): 6097-106, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24754743

RESUMO

Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge extended X-ray absorption fine structure (EXAFS) indicated that "autunite-type" sheets of meta-ankoleite transformed to "phosphuranylite-type" sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.


Assuntos
Fosfatos/química , Dióxido de Silício/química , Compostos de Urânio/química , Urânio/química , Águas Residuárias/química , Poluentes Radioativos da Água/química , Precipitação Química , Água Subterrânea/química , Resíduos Radioativos/análise , Solubilidade , Urânio/análise , Compostos de Urânio/análise , Poluentes Radioativos da Água/análise
17.
Environ Sci Technol ; 47(1): 283-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22823234

RESUMO

X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm(3), porosity: 40%) and the carbonated zone (density: 2.27 g/cm(3), porosity: 23%) after reaction with CO(2)-saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm(3), porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO(2) attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO(2) leakage.


Assuntos
Dióxido de Carbono/química , Materiais de Construção , Sequestro de Carbono , Fenômenos Geológicos , Temperatura Alta , Teste de Materiais , Porosidade , Pressão , Silicatos/química , Aço , Microtomografia por Raio-X
18.
Environ Sci Technol ; 47(18): 10349-55, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23941630

RESUMO

Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.


Assuntos
Água Subterrânea/química , Substâncias Húmicas , Iodatos/química , Iodetos/química , Fuligem/química , Iodo/química
19.
Environ Sci Technol ; 47(13): 7540-7, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23763706

RESUMO

The efficient capture of radionuclides with long half-lives such as technetium-99 ((99)Tc), uranium-238 ((238)U), and iodine-129 ((129)I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, nanostructured chalcogen-based aerogels called chalcogels are shown to be very effective at capturing ionic forms of (99)Tc and (238)U, as well as nonradioactive gaseous iodine (i.e., a surrogate for (129)I2), irrespective of the sorbent polarity. The chalcogel chemistries studied were Co0.7Bi0.3MoS4, Co0.7Cr0.3MoS4, Co0.5Ni0.5MoS4, PtGe2S5, and Sn2S3. The PtGe2S5 sorbent performed the best overall with capture efficiencies of 98.0% and 99.4% for (99)Tc and (238)U, respectively, and >99.0% for I2(g) over the duration of the experiment. The capture efficiencies for (99)Tc and (238)U varied between the different sorbents, ranging from 57.3-98.0% and 68.1-99.4%, respectively. All chalcogels showed >99.0% capture efficiency for iodine over the test duration. This versatile nature of chalcogels can provide an attractive option for the environmental remediation of the radionuclides associated with legacy wastes from nuclear weapons production as well as wastes generated during nuclear power production or nuclear fuel reprocessing.


Assuntos
Iodo/química , Poluentes Radioativos/química , Pertecnetato Tc 99m de Sódio/química , Sulfetos/química , Compostos de Urânio/química , Calcogênios/química , Recuperação e Remediação Ambiental , Géis/química
20.
J Hazard Mater ; 443(Pt A): 130183, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36272373

RESUMO

Neutron-activated concrete waste is one of the most challenging radioactive wastes to decontaminate because the radionuclides exist in a chemically stable binding state, and it is very difficult to break those bindings with the conventional acid decontamination method. Here, we suggest a new dense medium separation (DMS) of felsic and mafic minerals from simulated neutron-activated concrete waste using sodium-polytungstate (SPT) solution because most elements (Eu, Co, Fe, and Mn) that can be activated by neutrons are concentrated in mafic minerals. We also determined the optimal density of the SPT solution as ∼ 2.70 g/cm3, and a high degree of decontamination was achieved for sand particles ranging from 75 to 500 µm in size. Under these optimized conditions, DMS (80.02%) exhibits much higher radionuclide removal efficiency (RRE) than 5 M acid decontaminations (23.27-31.29%) for Eu. Furthermore, DMS (59.38-63.36%) shows similar RRE to 5 M acid decontaminations (41.67-73.94%) for Fe, Mn, and Co. We believe this DMS process could be useful and applicable to the decontamination of neutron-activated concrete wastes because it is possible to perform a large-scale process compared to conventional acid decontamination methods, which is also advantageous in reducing secondary waste generation and facile radionuclide recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA