Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(3): 1127-1140, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205833

RESUMO

Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.


Assuntos
Adipócitos/metabolismo , Adipogenia , Diferenciação Celular , Campos Magnéticos , Engenharia Tecidual , Células A549 , Adipócitos/citologia , Humanos , Alicerces Teciduais
2.
Tissue Barriers ; 10(1): 1962698, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34355641

RESUMO

In spite of clinical advancements and improved diagnostic techniques, breast cancers are the leading cause of cancer-associated deaths in women worldwide. Although 70% of early breast cancers can be cured, there are no efficient therapies against metastatic breast cancers. Several factors including connexins and gap junctions play roles in breast tumorigenesis. Connexins are critical for cellular processes as a linkage between connexin mutations and hereditary disorders demonstrated their importance for tissue homeostasis. Further, alterations in their expression, localization and channel activities were observed in many cancers including breast cancer. Both channel-dependent and independent functions of connexins were reported in initiation and progression of cancers. Unlike initial reports suggesting tumor suppressor functions, connexins and gap junctions have stage, context and isoform dependent effects in breast cancers similar to other cancers. In this review, we tried to describe the current understanding of connexins in tumorigenesis specifically in breast cancers.


Assuntos
Neoplasias da Mama , Conexinas , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Comunicação Celular , Conexinas/genética , Conexinas/metabolismo , Feminino , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Humanos , Transdução de Sinais
3.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118851, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918981

RESUMO

Connexins (Cx), the basic subunit of gap junctions, play important roles in cell homeostasis, and their abnormal expression and function are associated with human hereditary diseases and cancers. In tumorigenesis, connexins were observed to have both anti-tumorigenic and pro-tumorigenic roles in a context- and stage-dependent manner. Initially, Cx26 and Cx43 were thought to be the only connexins involved in normal breast homeostasis and breast cancer. Later on, association of Cx32 expression with lymph node metastasis of breast cancer and subsequent demonstration of its expression in normal breast tissue suggested that Cx32 contributes to breast tissue homeostasis. Here, we aimed to determine the effects of Cx32 on normal breast cells, MCF10A, and on breast cancer cells, MDA-MB-231. Cx32 overexpression had profound effects on MCF10A cells, decreasing cell proliferation by increasing the doubling time of MCF10A. Furthermore, MCF10A cells acquired mesenchymal-like appearance upon Cx32 expression and had increased migration capacity and expression of both E-cadherin and vimentin. In contrast, Cx32 overexpression altered the EMT markers of MDA-MB-231 by increasing the expression of mesenchymal markers, such as slug and vimentin, and decreasing E-cadherin expression without affecting their proliferation and morphology. Our results indicate, for the first time in the literature, that Cx32 has tumor-promoting roles in MCF10A and MDA-MB-231 cells.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Conexinas/genética , Metástase Linfática/genética , Neoplasias da Mama/patologia , Comunicação Celular/genética , Linhagem Celular Tumoral , Conexina 26 , Conexina 43/genética , Feminino , Junções Comunicantes/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/patologia , Proteína beta-1 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA