Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Med Phys ; 51(4): 2424-2443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354310

RESUMO

BACKGROUND: Standards for image quality evaluation in multi-detector CT (MDCT) and cone-beam CT (CBCT) are evolving to keep pace with technological advances. A clear need is emerging for methods that facilitate rigorous quality assurance (QA) with up-to-date metrology and streamlined workflow suitable to a range of MDCT and CBCT systems. PURPOSE: To evaluate the feasibility and workflow associated with image quality (IQ) assessment in longitudinal studies for MDCT and CBCT with a single test phantom and semiautomated analysis of objective, quantitative IQ metrology. METHODS: A test phantom (CorgiTM Phantom, The Phantom Lab, Greenwich, New York, USA) was used in monthly IQ testing over the course of 1 year for three MDCT scanners (one of which presented helical and volumetric scan modes) and four CBCT scanners. Semiautomated software analyzed image uniformity, linearity, contrast, noise, contrast-to-noise ratio (CNR), 3D noise-power spectrum (NPS), modulation transfer function (MTF) in axial and oblique directions, and cone-beam artifact magnitude. The workflow was evaluated using methods adapted from systems/industrial engineering, including value stream process modeling (VSPM), standard work layout (SWL), and standard work control charts (SWCT) to quantify and optimize test methodology in routine practice. The completeness and consistency of DICOM data from each system was also evaluated. RESULTS: Quantitative IQ metrology provided valuable insight in longitudinal quality assurance (QA), with metrics such as NPS and MTF providing insight on root cause for various forms of system failure-for example, detector calibration and geometric calibration. Monthly constancy testing showed variations in IQ test metrics owing to system performance as well as phantom setup and provided initial estimates of upper and lower control limits appropriate to QA action levels. Rigorous evaluation of QA workflow identified methods to reduce total cycle time to ∼10 min for each system-viz., use of a single phantom configuration appropriate to all scanners and Head or Body scan protocols. Numerous gaps in the completeness and consistency of DICOM data were observed for CBCT systems. CONCLUSION: An IQ phantom and test methodology was found to be suitable to QA of MDCT and CBCT systems with streamlined workflow appropriate to busy clinical settings.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Fluxo de Trabalho , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Tomógrafos Computadorizados , Estudos Longitudinais
2.
IEEE Trans Med Imaging ; PP2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602853

RESUMO

Image-guided interventional oncology procedures can greatly enhance the outcome of cancer treatment. As an enhancing procedure, oncology smart material delivery can increase cancer therapy's quality, effectiveness, and safety. However, the effectiveness of enhancing procedures highly depends on the accuracy of smart material placement procedures. Inaccurate placement of smart materials can lead to adverse side effects and health hazards. Image guidance can considerably improve the safety and robustness of smart material delivery. In this study, we developed a novel generative deep-learning platform that highly prioritizes clinical practicality and provides the most informative intra-operative feedback for image-guided smart material delivery. XIOSIS generates a patient-specific 3D volumetric computed tomography (CT) from three intraoperative radiographs (X-ray images) acquired by a mobile C-arm during the operation. As the first of its kind, XIOSIS (i) synthesizes the CT from small field-of-view radiographs;(ii) reconstructs the intra-operative spacer distribution; (iii) is robust; and (iv) is equipped with a novel soft-contrast cost function. To demonstrate the effectiveness of XIOSIS in providing intra-operative image guidance, we applied XIOSIS to the duodenal hydrogel spacer placement procedure. We evaluated XIOSIS performance in an image-guided virtual spacer placement and actual spacer placement in two cadaver specimens. XIOSIS showed a clinically acceptable performance, reconstructed the 3D intra-operative hydrogel spacer distribution with an average structural similarity of 0.88 and Dice coefficient of 0.63 and with less than 1 cm difference in spacer location relative to the spinal cord.

3.
IEEE Trans Biomed Eng ; 71(4): 1298-1307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38048239

RESUMO

Flexible array transducers can adapt to patient-specific geometries during real-time ultrasound (US) image-guided therapy monitoring. This makes the system radiation-free and less user-dependency. Precise estimation of the flexible transducer's geometry is crucial for the delay-and-sum (DAS) beamforming algorithm to reconstruct B-mode US images. The primary innovation of this research is to build a system named FLexible transducer with EXternal tracking (FLEX) to estimate the position of each element of the flexible transducer and reconstruct precise US images. FLEX utilizes customized optical markers and a tracker to monitor the probe's geometry, employing a polygon fitting algorithm to estimate the position and azimuth angle of each transducer element. Subsequently, the traditional DAS algorithm processes the delay estimation from the tracked element position, reconstructing US images from radio-frequency (RF) channel data. The proposed method underwent evaluation on phantoms and cadaveric specimens, demonstrating its clinical feasibility. Deviations in tracked probe geometry compared to ground truth were minimal, measuring 0.50 ± 0.29 mm for the CIRS phantom, 0.54 ± 0.35 mm for the deformable phantom, and 0.36 ± 0.24 mm on the cadaveric specimen. Reconstructing the US image using tracked probe geometry significantly outperformed the untracked geometry, as indicated by a Dice score of 95.1 ± 3.3% versus 62.3 ± 9.2% for the CIRS phantom. The proposed method achieved high accuracy (<0.5 mm error) in tracking the element position for various random curvatures applicable for clinical deployment. The evaluation results show that the radiation-free proposed method can effectively reconstruct US images and assist in monitoring image-guided therapy with minimal user dependency.


Assuntos
Algoritmos , Transdutores , Humanos , Ultrassonografia , Imagens de Fantasmas , Cadáver
4.
Comput Med Imaging Graph ; 114: 102365, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38471330

RESUMO

PURPOSE: Improved integration and use of preoperative imaging during surgery hold significant potential for enhancing treatment planning and instrument guidance through surgical navigation. Despite its prevalent use in diagnostic settings, MR imaging is rarely used for navigation in spine surgery. This study aims to leverage MR imaging for intraoperative visualization of spine anatomy, particularly in cases where CT imaging is unavailable or when minimizing radiation exposure is essential, such as in pediatric surgery. METHODS: This work presents a method for deformable 3D-2D registration of preoperative MR images with a novel intraoperative long-length tomosynthesis imaging modality (viz., Long-Film [LF]). A conditional generative adversarial network is used to translate MR images to an intermediate bone image suitable for registration, followed by a model-based 3D-2D registration algorithm to deformably map the synthesized images to LF images. The algorithm's performance was evaluated on cadaveric specimens with implanted markers and controlled deformation, and in clinical images of patients undergoing spine surgery as part of a large-scale clinical study on LF imaging. RESULTS: The proposed method yielded a median 2D projection distance error of 2.0 mm (interquartile range [IQR]: 1.1-3.3 mm) and a 3D target registration error of 1.5 mm (IQR: 0.8-2.1 mm) in cadaver studies. Notably, the multi-scale approach exhibited significantly higher accuracy compared to rigid solutions and effectively managed the challenges posed by piecewise rigid spine deformation. The robustness and consistency of the method were evaluated on clinical images, yielding no outliers on vertebrae without surgical instrumentation and 3% outliers on vertebrae with instrumentation. CONCLUSIONS: This work constitutes the first reported approach for deformable MR to LF registration based on deep image synthesis. The proposed framework provides access to the preoperative annotations and planning information during surgery and enables surgical navigation within the context of MR images and/or dual-plane LF images.


Assuntos
Imageamento Tridimensional , Cirurgia Assistida por Computador , Criança , Humanos , Imageamento Tridimensional/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos , Cirurgia Assistida por Computador/métodos
5.
Med Phys ; 50(5): 2607-2624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906915

RESUMO

BACKGROUND: Image-guided neurosurgery requires high localization and registration accuracy to enable effective treatment and avoid complications. However, accurate neuronavigation based on preoperative magnetic resonance (MR) or computed tomography (CT) images is challenged by brain deformation occurring during the surgical intervention. PURPOSE: To facilitate intraoperative visualization of brain tissues and deformable registration with preoperative images, a 3D deep learning (DL) reconstruction framework (termed DL-Recon) was proposed for improved intraoperative cone-beam CT (CBCT) image quality. METHODS: The DL-Recon framework combines physics-based models with deep learning CT synthesis and leverages uncertainty information to promote robustness to unseen features. A 3D generative adversarial network (GAN) with a conditional loss function modulated by aleatoric uncertainty was developed for CBCT-to-CT synthesis. Epistemic uncertainty of the synthesis model was estimated via Monte Carlo (MC) dropout. Using spatially varying weights derived from epistemic uncertainty, the DL-Recon image combines the synthetic CT with an artifact-corrected filtered back-projection (FBP) reconstruction. In regions of high epistemic uncertainty, DL-Recon includes greater contribution from the FBP image. Twenty paired real CT and simulated CBCT images of the head were used for network training and validation, and experiments evaluated the performance of DL-Recon on CBCT images containing simulated and real brain lesions not present in the training data. Performance among learning- and physics-based methods was quantified in terms of structural similarity (SSIM) of the resulting image to diagnostic CT and Dice similarity metric (DSC) in lesion segmentation compared to ground truth. A pilot study was conducted involving seven subjects with CBCT images acquired during neurosurgery to assess the feasibility of DL-Recon in clinical data. RESULTS: CBCT images reconstructed via FBP with physics-based corrections exhibited the usual challenges to soft-tissue contrast resolution due to image non-uniformity, noise, and residual artifacts. GAN synthesis improved image uniformity and soft-tissue visibility but was subject to error in the shape and contrast of simulated lesions that were unseen in training. Incorporation of aleatoric uncertainty in synthesis loss improved estimation of epistemic uncertainty, with variable brain structures and unseen lesions exhibiting higher epistemic uncertainty. The DL-Recon approach mitigated synthesis errors while maintaining improvement in image quality, yielding 15%-22% increase in SSIM (image appearance compared to diagnostic CT) and up to 25% increase in DSC in lesion segmentation compared to FBP. Clear gains in visual image quality were also observed in real brain lesions and in clinical CBCT images. CONCLUSIONS: DL-Recon leveraged uncertainty estimation to combine the strengths of DL and physics-based reconstruction and demonstrated substantial improvements in the accuracy and quality of intraoperative CBCT. The improved soft-tissue contrast resolution could facilitate visualization of brain structures and support deformable registration with preoperative images, further extending the utility of intraoperative CBCT in image-guided neurosurgery.


Assuntos
Aprendizado Profundo , Humanos , Projetos Piloto , Incerteza , Tomografia Computadorizada de Feixe Cônico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
6.
Med Phys ; 49(5): 3053-3066, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363391

RESUMO

BACKGROUND: Indirect detection flat-panel detectors (FPDs) consisting of hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are a prevalent technology for digital x-ray imaging. However, their performance is challenged in applications requiring low exposure levels, high spatial resolution, and high frame rate. Emerging FPD designs using metal oxide TFTs may offer potential performance improvements compared to FPDs based on a-Si:H TFTs. PURPOSE: This work investigates the imaging performance of a new indium gallium zinc oxide (IGZO) TFT-based detector in 2D fluoroscopy and 3D cone-beam CT (CBCT). METHODS: The new FPD consists of a sensor array combining IGZO TFTs with a-Si:H photodiodes and a 0.7-mm thick CsI:Tl scintillator. The FPD was implemented on an x-ray imaging bench with system geometry emulating intraoperative CBCT. A conventional FPD with a-Si:H TFTs and a 0.6-mm thick CsI:Tl scintillator was similarly implemented as a basis of comparison. 2D imaging performance was characterized in terms of electronic noise, sensitivity, linearity, lag, spatial resolution (modulation transfer function, MTF), image noise (noise-power spectrum, NPS), and detective quantum efficiency (DQE) with entrance air kerma (EAK) ranging from 0.3 to 1.2 µGy. 3D imaging performance was evaluated in terms of the 3D MTF and noise-equivalent quanta (NEQ), soft-tissue contrast-to-noise ratio (CNR), and image quality evident in anthropomorphic phantoms for a range of anatomical sites and dose, with weighted air kerma, K w ${K_w}$ , ranging from 0.8 to 4.9 mGy. RESULTS: The 2D imaging performance of the IGZO-based FPD exhibited up to ∼1.7× lower electronic noise than the a-Si:H FPD at matched pixel pitch. Furthermore, the IGZO FPD exhibited ∼27% increase in mid-frequency DQE (1 mm-1 ) at matched pixel size and dose (EAK ≈ 1.0 µGy) and ∼11% increase after adjusting for differences in scintillator thickness. 2D spatial resolution was limited by the scintillator for each FPD. The IGZO-based FPD demonstrated improved 3D NEQ at all spatial frequencies in both head (≥25% increase for all dose levels) and body (≥10% increase for K w ${K_w}$ ≤2 mGy) imaging scenarios. These characteristics translated to improved low-contrast visualization in anthropomorphic phantoms, demonstrating ≥10% improvement in CNR and extension of the low-dose range for which the detector is input-quantum limited. CONCLUSION: The IGZO-based FPD demonstrated improvements in electronic noise, image lag, and NEQ that translated to measurable improvements in 2D and 3D imaging performance compared to a conventional FPD based on a-Si:H TFTs. The improvements are most beneficial for 2D or 3D imaging scenarios involving low-dose and/or high-frame rate.


Assuntos
Gálio , Óxido de Zinco , Imageamento Tridimensional , Índio , Imagens de Fantasmas , Raios X , Zinco
7.
J Med Imaging (Bellingham) ; 9(4): 045004, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36046335

RESUMO

Purpose: Internal fixation of pelvic fractures is a challenging task requiring the placement of instrumentation within complex three-dimensional bone corridors, typically guided by fluoroscopy. We report a system for two- and three-dimensional guidance using a drill-mounted video camera and fiducial markers with evaluation in first preclinical studies. Approach: The system uses a camera affixed to a surgical drill and multimodality (optical and radio-opaque) markers for real-time trajectory visualization in fluoroscopy and/or CT. Improvements to a previously reported prototype include hardware components (mount, camera, and fiducials) and software (including a system for detecting marker perturbation) to address practical requirements necessary for translation to clinical studies. Phantom and cadaver experiments were performed to quantify the accuracy of video-fluoroscopy and video-CT registration, the ability to detect marker perturbation, and the conformance in placing guidewires along realistic pelvic trajectories. The performance was evaluated in terms of geometric accuracy and conformance within bone corridors. Results: The studies demonstrated successful guidewire delivery in a cadaver, with a median entry point error of 1.00 mm (1.56 mm IQR) and median angular error of 1.94 deg (1.23 deg IQR). Such accuracy was sufficient to guide K-wire placement through five of the six trajectories investigated with a strong level of conformance within bone corridors. The sixth case demonstrated a cortical breach due to extrema in the registration error. The system was able to detect marker perturbations and alert the user to potential registration issues. Feasible workflows were identified for orthopedic-trauma scenarios involving emergent cases (with no preoperative imaging) or cases with preoperative CT. Conclusions: A prototype system for guidewire placement was developed providing guidance that is potentially compatible with orthopedic-trauma workflow. First preclinical (cadaver) studies demonstrated accurate guidance of K-wire placement in pelvic bone corridors and the ability to automatically detect perturbations that degrade registration accuracy. The preclinical prototype demonstrated performance and utility supporting translation to clinical studies.

8.
Med Phys ; 49(9): 5715-5727, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35762028

RESUMO

BACKGROUND: Spinal deformation during surgical intervention (caused by patient positioning and/or the correction of malalignment) confounds conventional navigation due to the assumptions of rigid transformation. Moreover, the ability to accurately quantify spinal alignment in the operating room would provide an assessment of the surgical product via metrics that correlate with clinical outcomes. PURPOSE: A method for deformable 3D-2D registration of preoperative CT to intraoperative long-length tomosynthesis images is reported for an accurate 3D evaluation of device placement in the presence of spinal deformation and automated evaluation of global spinal alignment (GSA). METHODS: Long-length tomosynthesis ("Long Film," LF) images were acquired using an O-arm imaging system (Medtronic, Minneapolis USA). A deformable 3D-2D patient registration was developed using multi-scale masking (proceeding from the full-length image to local subvolumes about each vertebra) to transform vertebral labels and planning information from preoperative CT to the LF images. Automatic measurement of GSA (main thoracic kyphosis [MThK] and lumbar lordosis [LL]) was obtained using a spline fit to registered labels. The "Known-Component Registration" method for device registration was adapted to the multi-scale process for 3D device localization from orthogonal LF images. The multi-scale framework was evaluated using a deformable spine phantom in which pedicle screws were inserted, and deformations were induced over a range in LL ∼25°-80°. Further validation was carried out in a cadaver study with implanted pedicle screws and a similar range of spinal deformation. The accuracy of patient and device registration was evaluated in terms of 3D translational error and target registration error, respectively, and the accuracies of automatic GSA measurements were compared to manual annotation. RESULTS: Phantom studies demonstrated accurate registration via the multi-scale framework for all vertebral levels in both the neutral and deformed spine: median (interquartile range, IQR) patient registration error was 1.1 mm (0.7-1.9 mm IQR). Automatic measures of MThK and LL agreed with manual delineation within -1.1° ± 2.2° and 0.7° ± 2.0° (mean and standard deviation), respectively. Device registration error was 0.7 mm (0.4-1.0 mm IQR) at the screw tip and 0.9° (1.0°-1.5°) about the screw trajectory. Deformable 3D-2D registration significantly outperformed conventional rigid registration (p < 0.05), which exhibited device registration errors of 2.1 mm (0.8-4.1 mm) and 4.1° (1.2°-9.5°). Cadaver studies verified performance under realistic conditions, demonstrating patient registration error of 1.6 mm (0.9-2.1 mm); MThK within -4.2° ± 6.8° and LL within 1.7° ± 3.5°; and device registration error of 0.8 mm (0.5-1.9 mm) and 0.7° (0.4°-1.2°) for the multi-scale deformable method, compared to 2.5 mm (1.0-7.9 mm) and 2.3° (1.6°-8.1°) for rigid registration (p < 0.05). CONCLUSION: The deformable 3D-2D registration framework leverages long-length intraoperative imaging to achieve accurate patient and device registration over the extended lengths of the spine (up to 64 cm) even with strong anatomical deformation. The method offers a new means for the quantitative validation of spinal correction (intraoperative GSA measurement) and the 3D verification of device placement in comparison to preoperative images and planning data.


Assuntos
Parafusos Pediculares , Cirurgia Assistida por Computador , Algoritmos , Cadáver , Humanos , Imageamento Tridimensional/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
9.
Int J Comput Assist Radiol Surg ; 17(12): 2263-2267, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35986832

RESUMO

PURPOSE: Manual surgical manipulation of the tibia and fibula is necessary to properly align and reduce the space in ankle fractures involving sprain of the distal tibiofibular syndesmosis. However, manual reduction is highly variable and can result in malreduction in about half of the cases. Therefore, we are developing an image-guided robotic assistant to improve reduction accuracy. The purpose of this study is to quantify the forces associated with reduction of the ankle syndesmosis to define the requirements for our robot design. METHODS: Using a cadaveric specimen, we designed a fixture jig to fix the tibia securely on the operating table. We also designed a custom fibula grasping plate to which a force-torque measuring device is attached. The surgeon manually reduced the fibula utilizing this construct while translational and rotational forces along with displacement were being measured. This was first performed on an intact ankle without ligament injury and after the syndesmosis ligaments were cut. RESULTS: Six manipulation techniques were performed on the three principal directions of reduction at the cadaveric ankle. The results demonstrated the maximum force applied to the lateral direction to be 96.0 N with maximum displacement of 8.5 mm, applied to the anterior-posterior direction to be 71.6 N with maximum displacement of 10.7 mm, and the maximum torque applied to external-internal rotation to be 2.5 Nm with maximum rotation of 24.6°. CONCLUSIONS: The specific forces needed to perform the distal tibiofibular syndesmosis manipulation are not well understood. This study quantified these manipulation forces needed along with their displacement for accurate reduction of ankle syndesmosis. This is a necessary first step to help us define the design requirements of our robotic assistance from the aspects of forces and displacements.


Assuntos
Traumatismos do Tornozelo , Robótica , Humanos , Articulação do Tornozelo/cirurgia , Traumatismos do Tornozelo/cirurgia , Fíbula/cirurgia , Cadáver
10.
IEEE Trans Med Robot Bionics ; 4(1): 28-37, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35368731

RESUMO

Conventional neuro-navigation can be challenged in targeting deep brain structures via transventricular neuroendoscopy due to unresolved geometric error following soft-tissue deformation. Current robot-assisted endoscopy techniques are fairly limited, primarily serving to planned trajectories and provide a stable scope holder. We report the implementation of a robot-assisted ventriculoscopy (RAV) system for 3D reconstruction, registration, and augmentation of the neuroendoscopic scene with intraoperative imaging, enabling guidance even in the presence of tissue deformation and providing visualization of structures beyond the endoscopic field-of-view. Phantom studies were performed to quantitatively evaluate image sampling requirements, registration accuracy, and computational runtime for two reconstruction methods and a variety of clinically relevant ventriculoscope trajectories. A median target registration error of 1.2 mm was achieved with an update rate of 2.34 frames per second, validating the RAV concept and motivating translation to future clinical studies.

11.
Med Phys ; 38(4): 1785-98, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21626913

RESUMO

PURPOSE: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). METHODS: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. RESULTS: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. CONCLUSIONS: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Fatores de Tempo
12.
J Med Imaging (Bellingham) ; 8(1): 015002, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33604409

RESUMO

Purpose: Percutaneous fracture fixation is a challenging procedure that requires accurate interpretation of fluoroscopic images to insert guidewires through narrow bone corridors. We present a guidance system with a video camera mounted onboard the surgical drill to achieve real-time augmentation of the drill trajectory in fluoroscopy and/or CT. Approach: The camera was mounted on the drill and calibrated with respect to the drill axis. Markers identifiable in both video and fluoroscopy are placed about the surgical field and co-registered by feature correspondences. If available, a preoperative CT can also be co-registered by 3D-2D image registration. Real-time guidance is achieved by virtual overlay of the registered drill axis on fluoroscopy or in CT. Performance was evaluated in terms of target registration error (TRE), conformance within clinically relevant pelvic bone corridors, and runtime. Results: Registration of the drill axis to fluoroscopy demonstrated median TRE of 0.9 mm and 2.0 deg when solved with two views (e.g., anteroposterior and lateral) and five markers visible in both video and fluoroscopy-more than sufficient to provide Kirschner wire (K-wire) conformance within common pelvic bone corridors. Registration accuracy was reduced when solved with a single fluoroscopic view ( TRE = 3.4 mm and 2.7 deg) but was also sufficient for K-wire conformance within pelvic bone corridors. Registration was robust with as few as four markers visible within the field of view. Runtime of the initial implementation allowed fluoroscopy overlay and/or 3D CT navigation with freehand manipulation of the drill up to 10 frames / s . Conclusions: A drill-mounted video guidance system was developed to assist with K-wire placement. Overall workflow is compatible with fluoroscopically guided orthopaedic trauma surgery and does not require markers to be placed in preoperative CT. The initial prototype demonstrates accuracy and runtime that could improve the accuracy of K-wire placement, motivating future work for translation to clinical studies.

13.
J Med Imaging (Bellingham) ; 8(5): 052103, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33732755

RESUMO

Purpose: Cone-beam computed tomography (CBCT) is commonly used in the operating room to evaluate the placement of surgical implants in relation to critical anatomical structures. A particularly problematic setting, however, is the imaging of metallic implants, where strong artifacts can obscure visualization of both the implant and surrounding anatomy. Such artifacts are compounded when combined with low-dose imaging techniques such as sparse-view acquisition. Approach: This work presents a dual convolutional neural network approach, one operating in the sinogram domain and one in the reconstructed image domain, that is specifically designed for the physics and setting of intraoperative CBCT to address the sources of beam hardening and sparse view sampling that contribute to metal artifacts. The networks were trained with images from cadaver scans with simulated metal hardware. Results: The trained networks were tested on images of cadavers with surgically implanted metal hardware, and performance was compared with a method operating in the image domain alone. While both methods removed most image artifacts, superior performance was observed for the dual-convolutional neural network (CNN) approach in which beam-hardening and view sampling effects were addressed in both the sinogram and image domain. Conclusion: The work demonstrates an innovative approach for eliminating metal and sparsity artifacts in CBCT using a dual-CNN framework which does not require a metal segmentation.

14.
Phys Med Biol ; 66(5): 055008, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477120

RESUMO

PURPOSE: A system for long-length intraoperative imaging is reported based on longitudinal motion of an O-arm gantry featuring a multi-slot collimator. We assess the utility of long-length tomosynthesis and the geometric accuracy of 3D image registration for surgical guidance and evaluation of long spinal constructs. METHODS: A multi-slot collimator with tilted apertures was integrated into an O-arm system for long-length imaging. The multi-slot projective geometry leads to slight view disparity in both long-length projection images (referred to as 'line scans') and tomosynthesis 'slot reconstructions' produced using a weighted-backprojection method. The radiation dose for long-length imaging was measured, and the utility of long-length, intraoperative tomosynthesis was evaluated in phantom and cadaver studies. Leveraging the depth resolution provided by parallax views, an algorithm for 3D-2D registration of the patient and surgical devices was adapted for registration with line scans and slot reconstructions. Registration performance using single-plane or dual-plane long-length images was evaluated and compared to registration accuracy achieved using standard dual-plane radiographs. RESULTS: Longitudinal coverage of ∼50-64 cm was achieved with a single long-length slot scan, providing a field-of-view (FOV) up to (40 × 64) cm2, depending on patient positioning. The dose-area product (reference point air kerma × x-ray field area) for a slot scan ranged from ∼702-1757 mGy·cm2, equivalent to ∼2.5 s of fluoroscopy and comparable to other long-length imaging systems. Long-length scanning produced high-resolution tomosynthesis reconstructions, covering ∼12-16 vertebral levels. 3D image registration using dual-plane slot reconstructions achieved median target registration error (TRE) of 1.2 mm and 0.6° in cadaver studies, outperforming registration to dual-plane line scans (TRE = 2.8 mm and 2.2°) and radiographs (TRE = 2.5 mm and 1.1°). 3D registration using single-plane slot reconstructions leveraged the ∼7-14° angular separation between slots to achieve median TRE ∼2 mm and <2° from a single scan. CONCLUSION: The multi-slot configuration provided intraoperative visualization of long spine segments, facilitating target localization, assessment of global spinal alignment, and evaluation of long surgical constructs. 3D-2D registration to long-length tomosynthesis reconstructions yielded a promising means of guidance and verification with accuracy exceeding that of 3D-2D registration to conventional radiographs.


Assuntos
Imageamento Tridimensional/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador , Tomografia , Algoritmos , Fluoroscopia , Humanos , Período Intraoperatório , Imagens de Fantasmas
15.
J Med Imaging (Bellingham) ; 8(3): 035001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34124283

RESUMO

Purpose: A method for fluoroscopic guidance of a robotic assistant is presented for instrument placement in pelvic trauma surgery. The solution uses fluoroscopic images acquired in standard clinical workflow and helps avoid repeat fluoroscopy commonly performed during implant guidance. Approach: Images acquired from a mobile C-arm are used to perform 3D-2D registration of both the patient (via patient CT) and the robot (via CAD model of a surgical instrument attached to its end effector, e.g; a drill guide), guiding the robot to target trajectories defined in the patient CT. The proposed approach avoids C-arm gantry motion, instead manipulating the robot to acquire disparate views of the instrument. Phantom and cadaver studies were performed to determine operating parameters and assess the accuracy of the proposed approach in aligning a standard drill guide instrument. Results: The proposed approach achieved average drill guide tip placement accuracy of 1.57 ± 0.47 mm and angular alignment of 0.35 ± 0.32 deg in phantom studies. The errors remained within 2 mm and 1 deg in cadaver experiments, comparable to the margins of errors provided by surgical trackers (but operating without the need for external tracking). Conclusions: By operating at a fixed fluoroscopic perspective and eliminating the need for encoded C-arm gantry movement, the proposed approach simplifies and expedites the registration of image-guided robotic assistants and can be used with simple, non-calibrated, non-encoded, and non-isocentric C-arm systems to accurately guide a robotic device in a manner that is compatible with the surgical workflow.

16.
Med Phys ; 48(11): 6800-6809, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34519364

RESUMO

PURPOSE: To characterize the 3D imaging performance and radiation dose for a prototype slot-beam configuration on an intraoperative O-arm™ Surgical Imaging System (Medtronic Inc., Littleton, MA) and identify potential improvements in soft-tissue image quality for surgical interventions. METHODS: A slot collimator was integrated with the O-arm™ system for slot-beam axial CT. The collimator can be automatically actuated to provide 1.2° slot-beam longitudinal collimation. Cone-beam and slot-beam configurations were investigated with and without an antiscatter grid (12:1 grid ratio, 60 lines/cm). Dose, scatter, image noise, and soft-tissue contrast resolution were evaluated in quantitative phantoms for head and body configurations over a range of exposure levels (beam energy and mAs), with reconstruction performed via filtered-backprojection. Qualitative imaging performance across various anatomical sites and imaging tasks was assessed with anthropomorphic head, abdomen, and pelvis phantoms. RESULTS: The dose for a slot-beam scan varied from 0.02-0.06 mGy/mAs for head protocols to 0.01-0.03 mGy/mAs for body protocols, yielding dose reduction by ∼1/5 to 1/3 compared to cone-beam, owing to beam collimation and reduced x-ray scatter. The slot-beam provided an ∼6-7× reduction in scatter-to-primary ratio (SPR) compared to the cone-beam, yielding SPR ∼20-80% for head and body without the grid and ∼7-30% with the grid. Compared to cone-beam scans at equivalent dose, slot-beam images exhibited an ∼2.5× increase in soft-tissue contrast-to-noise ratio (CNR) for both grid and gridless configurations. For slot-beam scans, a further ∼10-30% improvement in CNR was achieved when the grid was removed. Slot-beam imaging could benefit certain interventional scenarios in which improved visualization of soft tissues is required within a fairly narrow longitudinal region of interest ( ± 7 mm in z )--for example, checking the completeness of tumor resection, preservation of adjacent anatomy, or detection of complications (e.g., hemorrhage). While preserving existing capabilities for fluoroscopy and cone-beam CT, slot-beam scanning could enhance the utility of intraoperative imaging and provide a useful mode for safety and validation checks in image-guided surgery. CONCLUSIONS: The 3D imaging performance and dose of a prototype slot-beam CT configuration on the O-arm™ system was investigated. Substantial improvements in soft-tissue image quality and reduction in radiation dose are evident with the slot-beam configuration due to reduced x-ray scatter.


Assuntos
Imageamento Tridimensional , Cirurgia Assistida por Computador , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Espalhamento de Radiação , Tomografia Computadorizada por Raios X
17.
J Med Imaging (Bellingham) ; 7(3): 031502, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32090136

RESUMO

Purpose: Data-intensive modeling could provide insight on the broad variability in outcomes in spine surgery. Previous studies were limited to analysis of demographic and clinical characteristics. We report an analytic framework called "SpineCloud" that incorporates quantitative features extracted from perioperative images to predict spine surgery outcome. Approach: A retrospective study was conducted in which patient demographics, imaging, and outcome data were collected. Image features were automatically computed from perioperative CT. Postoperative 3- and 12-month functional and pain outcomes were analyzed in terms of improvement relative to the preoperative state. A boosted decision tree classifier was trained to predict outcome using demographic and image features as predictor variables. Predictions were computed based on SpineCloud and conventional demographic models, and features associated with poor outcome were identified from weighting terms evident in the boosted tree. Results: Neither approach was predictive of 3- or 12-month outcomes based on preoperative data alone in the current, preliminary study. However, SpineCloud predictions incorporating image features obtained during and immediately following surgery (i.e., intraoperative and immediate postoperative images) exhibited significant improvement in area under the receiver operating characteristic (AUC): AUC = 0.72 ( CI 95 = 0.59 to 0.83) at 3 months and AUC = 0.69 ( CI 95 = 0.55 to 0.82) at 12 months. Conclusions: Predictive modeling of lumbar spine surgery outcomes was improved by incorporation of image-based features compared to analysis based on conventional demographic data. The SpineCloud framework could improve understanding of factors underlying outcome variability and warrants further investigation and validation in a larger patient cohort.

18.
J Med Imaging (Bellingham) ; 7(3): 035001, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32411814

RESUMO

Purpose: Measurement of global spinal alignment (GSA) is an important aspect of diagnosis and treatment evaluation for spinal deformity but is subject to a high level of inter-reader variability. Approach: Two methods for automatic GSA measurement are proposed to mitigate such variability and reduce the burden of manual measurements. Both approaches use vertebral labels in spine computed tomography (CT) as input: the first (EndSeg) segments vertebral endplates using input labels as seed points; and the second (SpNorm) computes a two-dimensional curvilinear fit to the input labels. Studies were performed to characterize the performance of EndSeg and SpNorm in comparison to manual GSA measurement by five clinicians, including measurements of proximal thoracic kyphosis, main thoracic kyphosis, and lumbar lordosis. Results: For the automatic methods, 93.8% of endplate angle estimates were within the inter-reader 95% confidence interval ( CI 95 ). All GSA measurements for the automatic methods were within the inter-reader CI 95 , and there was no statistically significant difference between automatic and manual methods. The SpNorm method appears particularly robust as it operates without segmentation. Conclusions: Such methods could improve the reproducibility and reliability of GSA measurements and are potentially suitable to applications in large datasets-e.g., for outcome assessment in surgical data science.

19.
J Med Imaging (Bellingham) ; 6(4): 044008, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31853461

RESUMO

Convolutional neural networks (CNNs) offer a promising means to achieve fast deformable image registration with accuracy comparable to conventional, physics-based methods. A persistent question with CNN methods, however, is whether they will be able to generalize to data outside of the training set. We investigated this question of mismatch between train and test data with respect to first- and second-order image statistics (e.g., spatial resolution, image noise, and power spectrum). A UNet-based architecture was built and trained on simulated CT images for various conditions of image noise (dose), spatial resolution, and deformation magnitude. Target registration error was measured as a function of the difference in statistical properties between the test and training data. Generally, registration error is minimized when the training data exactly match the statistics of the test data; however, networks trained with data exhibiting a diversity in statistical characteristics generalized well across the range of statistical conditions considered. Furthermore, networks trained on simulated image content with first- and second-order statistics selected to match that of real anatomical data were shown to provide reasonable registration performance on real anatomical content, offering potential new means for data augmentation. Characterizing the behavior of a CNN in the presence of statistical mismatch is an important step in understanding how these networks behave when deployed on new, unobserved data. Such characterization can inform decisions on whether retraining is necessary and can guide the data collection and/or augmentation process for training.

20.
IEEE Trans Med Imaging ; 38(9): 2016-2027, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30932834

RESUMO

Soft-tissue deformation presents a confounding factor to rigid image registration by introducing image content inconsistent with the underlying motion model, presenting non-correspondent structure with potentially high power, and creating local minima that challenge iterative optimization. In this paper, we introduce a model for registration performance that includes deformable soft tissue as a power-law noise distribution within a statistical framework describing the Cramer-Rao lower bound (CRLB) and root-mean-squared error (RMSE) in registration performance. The model incorporates both cross-correlation and gradient-based similarity metrics, and the model was tested in application to 3D-2D (CT-to-radiograph) and 3D-3D (CT-to-CT) image registration. Predictions accurately reflect the trends in registration error as a function of dose (quantum noise), and the choice of similarity metrics for both registration scenarios. Incorporating soft-tissue deformation as a noise source yields important insight on the limits of registration performance with respect to algorithm design and the clinical application or anatomical context. For example, the model quantifies the advantage of gradient-based similarity metrics in 3D-2D registration, identifies the low-dose limits of registration performance, and reveals the conditions for which the registration performance is fundamentally limited by soft-tissue deformation.


Assuntos
Imageamento Tridimensional/métodos , Modelos Estatísticos , Tomografia Computadorizada por Raios X/métodos , Humanos , Vértebras Lombares/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA