RESUMO
Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.
Assuntos
Arabidopsis , Poligalacturonase , Poligalacturonase/genética , Poligalacturonase/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Parede Celular/metabolismoRESUMO
Eukaryotic translation initiation factor eIF4B is required for efficient cap-dependent translation, it is overexpressed in cancer cells, and may influence stress granule formation. Due to the high degree of intrinsic disorder, eIF4B is rarely observed in cryo-EM structures of translation complexes and only ever by its single structured RNA recognition motif domain, leaving the molecular details of its large intrinsically disordered region (IDR) unknown. By integrating experiments and simulations we demonstrate that eIF4B IDR orchestrates and fine-tunes an intricate transition from monomers to a condensed phase, in which large-size dynamic oligomers form before mesoscopic phase separation. Single-molecule spectroscopy combined with molecular simulations enabled us to characterize the conformational ensembles and underlying intra- and intermolecular dynamics across the oligomerization transition. The observed sensitivity to ionic strength and molecular crowding in the self-association landscape suggests potential regulation of eIF4B nanoscopic and mesoscopic behaviors such as driven by protein modifications, binding partners or changes to the cellular environment.
Assuntos
Simulação de Dinâmica Molecular , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/genética , Microscopia Crioeletrônica , Multimerização Proteica , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula , Fatores de Iniciação em EucariotosRESUMO
Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.