Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 20(10): 1311-1321, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527833

RESUMO

Whether screening the metabolic activity of immune cells facilitates discovery of molecular pathology remains unknown. Here we prospectively screened the extracellular acidification rate as a measure of glycolysis and the oxygen consumption rate as a measure of mitochondrial respiration in B cells from patients with primary antibody deficiency. The highest oxygen consumption rate values were detected in three study participants with persistent polyclonal B cell lymphocytosis (PPBL). Exome sequencing identified germline mutations in SDHA, which encodes succinate dehydrogenase subunit A, in all three patients with PPBL. SDHA gain-of-function led to an accumulation of fumarate in PPBL B cells, which engaged the KEAP1-Nrf2 system to drive the transcription of genes encoding inflammatory cytokines. In a single patient trial, blocking the activity of the cytokine interleukin-6 in vivo prevented systemic inflammation and ameliorated clinical disease. Overall, our study has identified pathological mitochondrial retrograde signaling as a disease modifier in primary antibody deficiency.


Assuntos
Linfócitos B/imunologia , Complexo II de Transporte de Elétrons/genética , Inflamação/metabolismo , Linfocitose/imunologia , Mitocôndrias/metabolismo , Mutação/genética , Anti-Inflamatórios/farmacologia , Respiração Celular , Células Cultivadas , Fumaratos/metabolismo , Glicólise , Humanos , Inflamação/genética , Interleucina-6/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio , Estudos Prospectivos , Transdução de Sinais , Sequenciamento do Exoma
2.
Immunity ; 48(3): 542-555.e6, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29523440

RESUMO

Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3ß (GSK3ß) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3ß at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Memória Imunológica , Mitocôndrias/metabolismo , Transdução de Sinais , Respiração Celular , Retículo Endoplasmático/ultraestrutura , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicólise , Membranas Intracelulares/metabolismo , Ativação Linfocitária , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/deficiência
3.
Eur J Immunol ; 48(10): 1632-1643, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028501

RESUMO

The role of mitochondrial biogenesis during naïve to effector differentiation of CD8+ T cells remains ill explored. In this study, we describe a critical role for early mitochondrial biogenesis in supporting cytokine production of nascent activated human naïve CD8+ T cells. Specifically, we found that prior to the first round of cell division activated naïve CD8+ T cells rapidly increase mitochondrial mass, mitochondrial respiration, and mitochondrial reactive oxygen species (mROS) generation, which were all inter-linked and important for CD8+ T cell effector maturation. Inhibition of early mitochondrial biogenesis diminished mROS dependent IL-2 production - as well as subsequent IL-2 dependent TNF, IFN-γ, perforin, and granzyme B production. Together, these findings point to the importance of mitochondrial biogenesis during early effector maturation of CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Mitocôndrias/fisiologia , Biogênese de Organelas , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Humanos , Interleucina-2/imunologia , Ativação Linfocitária , Espécies Reativas de Oxigênio/metabolismo
4.
Science ; 385(6704): eadk4898, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781354

RESUMO

After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.


Assuntos
Trifosfato de Adenosina , Linfócitos B , Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Indolamina-Pirrol 2,3,-Dioxigenase , NAD , Herpesvirus Humano 4/fisiologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Humanos , Camundongos , NAD/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Trifosfato de Adenosina/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Complexo I de Transporte de Elétrons/metabolismo , Transformação Celular Viral , Transformação Celular Neoplásica , Proliferação de Células , Viremia , Linfoma/virologia , Proteínas Virais
5.
Sci Rep ; 10(1): 9411, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523060

RESUMO

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is widely used for mRNA quantification. To accurately measure changing gene transcript levels under different experimental conditions, the use of appropriate reference gene transcripts is instrumental. In T cell immunology, suitable reference genes have been reported for bulk CD4+ and CD8+ T cells. However, many CD4+ and CD8+ T cell subsets have been described in the past. Although they respond differently to given activation stimuli, proper validation of suitable reference genes in these subsets is lacking. In this study, we evaluated twelve commonly used reference gene products in human naïve (NV) and effector memory (EM) CD8+ T cells under non-activated and activated (2 h, 10 h and 20 h) conditions. We used five different statistical approaches for data analysis. Our results show that a number of widely used reference transcripts become differentially expressed under activating conditions. Using them as references markedly alters results as exemplified with IFNG mRNA expression. The only candidate reference gene products that remained stable during the activation process were 18S rRNA and SDHA mRNA, encouraging their usage as reference gene products for RT-qPCR experiments, when quantifying mRNA levels in human NV and EM CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Descanso/fisiologia , Adolescente , Adulto , Linfócitos T CD4-Positivos/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Interferon gama/imunologia , Masculino , RNA Mensageiro/imunologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Adulto Jovem
6.
iScience ; 23(7): 101257, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599557

RESUMO

Immune escape contributes to viral persistence, yet little is known about human polyomaviruses. BK-polyomavirus (BKPyV) asymptomatically infects 90% of humans but causes premature allograft failure in kidney transplant patients. Despite virus-specific T cells and neutralizing antibodies, BKPyV persists in kidneys and evades immune control as evidenced by urinary shedding in immunocompetent individuals. Here, we report that BKPyV disrupts the mitochondrial network and membrane potential when expressing the 66aa-long agnoprotein during late replication. Agnoprotein is necessary and sufficient, using its amino-terminal and central domain for mitochondrial targeting and network disruption, respectively. Agnoprotein impairs nuclear IRF3-translocation, interferon-beta expression, and promotes p62/SQSTM1-mitophagy. Agnoprotein-mutant viruses unable to disrupt mitochondria show reduced replication and increased interferon-beta expression but can be rescued by type-I interferon blockade, TBK1-inhibition, or CoCl2-treatment. Mitochondrial fragmentation and p62/SQSTM1-autophagy occur in allograft biopsies of kidney transplant patients with BKPyV nephropathy. JCPyV and SV40 infection similarly disrupt mitochondrial networks, indicating a conserved mechanism facilitating polyomavirus persistence and post-transplant disease.

7.
Cell Metab ; 32(3): 457-467.e5, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738204

RESUMO

Serum acetate increases upon systemic infection. Acutely, assimilation of acetate expands the capacity of memory CD8+ T cells to produce IFN-γ. Whether acetate modulates memory CD8+ T cell metabolism and function during pathogen re-encounter remains unexplored. Here we show that at sites of infection, high acetate concentrations are being reached, yet memory CD8+ T cells shut down the acetate assimilating enzymes ACSS1 and ACSS2. Acetate, being thus largely excluded from incorporation into cellular metabolic pathways, now had different effects, namely (1) directly activating glutaminase, thereby augmenting glutaminolysis, cellular respiration, and survival, and (2) suppressing TCR-triggered calcium flux, and consequently cell activation and effector cell function. In vivo, high acetate abundance at sites of infection improved pathogen clearance while reducing immunopathology. This indicates that, during different stages of the immune response, the same metabolite-acetate-induces distinct immunometabolic programs within the same cell type.


Assuntos
Acetatos/metabolismo , Anti-Inflamatórios/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Acetatos/sangue , Acetatos/imunologia , Animais , Anti-Inflamatórios/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Virology ; 399(2): 322-31, 2010 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-20138326

RESUMO

Agnoprotein encoded by human polyomavirus BK (BKV) is a late cytoplasmic protein of 66 amino acids (aa) of unknown function. Immunofluorescence microscopy revealed a fine granular and a vesicular distribution in donut-like structures. Using BKV(Dunlop)-infected or agnoprotein-transfected cells, we investigated agnoprotein co-localization with subcellular structures. We found that agnoprotein co-localizes with lipid droplets (LD) in primary human renal tubular epithelial cells as well as in other cells supporting BKV replication in vitro (UTA, Vero cells). Using agnoprotein-enhanced green fluorescent protein (EGFP) fusion constructs, we demonstrate that agnoprotein aa 20-42 are required for targeting LD, whereas aa 1-20 or aa 42-66 were not. Agnoprotein aa 22-40 are predicted to form an amphipathic helix, and mutations A25D and F39E, disrupting its hydrophobic domain, prevented LD targeting. However, changing the phosphorylation site serine-11 to alanine or aspartic acid did not alter LD co-localization. Our findings provide new clues to unravel agnoprotein function.


Assuntos
Vírus BK/química , Lipídeos/química , Proteínas Virais Reguladoras e Acessórias/química , Sequência de Aminoácidos , Animais , Núcleo Celular/química , Células Cultivadas , Chlorocebus aethiops , Citoplasma/química , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Secundária de Proteína , Células Vero
9.
Proc Natl Acad Sci U S A ; 102(38): 13640-5, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16155125

RESUMO

Expression of the antiviral cytokines IFN-alpha/beta is among the most potent innate defenses of higher vertebrates to virus infections, which is controlled by the inducible transcription factor IFN regulatory factor (IRF)3. Borna disease virus (BDV) establishes persistent noncytolytic infections in animals and tissue culture cells, indicating that it can circumvent this antiviral reaction by an unexplained activity. In this study, we identify the BDV P protein as microbial gene product that associates with and inhibits the principal regulatory kinase of IRF3, Traf family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK-1). We demonstrate that the P protein counteracts TBK-1-dependent IFN-beta expression in cells and, hence, the establishment of an antiviral state. Furthermore, our data show that the BDV P protein itself is phosphorylated by TBK-1, suggesting that P functions as a viral decoy substrate that prevents activation of cellular target proteins of TBK-1. Thus, our findings provide evidence for a previously undescribed mechanism by which a viral protein interferes with the induction of the antiviral IFN cascade.


Assuntos
Doença de Borna/metabolismo , Vírus da Doença de Borna/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Vírus da Doença de Borna/genética , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Cães , Humanos , Fator Regulador 3 de Interferon , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Fosfoproteínas/genética , Fosforilação , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
10.
J Virol ; 79(10): 6043-51, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15857990

RESUMO

The inducible transcription factor NF-kappaB is commonly activated upon RNA virus infection and is a key player in the induction and regulation of the innate immune response. Borna disease virus (BDV) is a neurotropic negative-strand RNA virus, which replicates in the nucleus of the infected cell and causes a persistent infection that can lead to severe neurological disorders. To investigate the activation and function of NF-kappaB in BDV-infected cells, we stably transfected the highly susceptible neuronal guinea pig cell line CRL with a constitutively active (IKK EE) or dominant-negative (IKK KD) regulator of the IKK/NF-kappaB signaling pathway. While BDV titers were not affected in cells with impaired NF-kappaB signaling, the expression of an activated mutant of IkappaB kinase (IKK) resulted in a strong reduction in the intracellular viral titer in CRL cells. Electrophoretic mobility shift assays and luciferase reporter gene assays revealed that neither NF-kappaB nor interferon regulatory factors (IRFs) were activated upon acute BDV infection of wild-type or vector-transfected CRL cells. However, when IKK EE-transfected cells were used as target cells for BDV infection, DNA binding to an IRF3/7-responsive DNA element was detectable. Since IRF3/7 is a key player in the antiviral interferon response, our data indicate that enhanced NF-kappaB activity in the presence of BDV leads to the induction of antiviral pathways resulting in reduced virus titers. Consistent with this observation, the anti-BDV activity of NF-kappaB preferentially spread to areas of the brains of infected rats where activated NF-kappaB was not detectable.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Regulação Viral da Expressão Gênica , NF-kappa B/metabolismo , Animais , Doença de Borna/metabolismo , Vírus da Doença de Borna/genética , Encéfalo/metabolismo , Linhagem Celular , Feminino , Cobaias , Quinase I-kappa B , Imuno-Histoquímica , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais , Replicação Viral
11.
J Gen Virol ; 85(Pt 7): 1895-1898, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15218174

RESUMO

Borna disease virus polymerase activity is negatively regulated by the viral X protein. Using a virus minireplicon system it was found that all X mutants that no longer interacted with the viral P protein failed to exhibit significant inhibitory activity. The action of X could further be neutralized by expression of a P fragment that contained the X interaction domain but lacked all domains known to mediate interaction with other viral proteins. X thus appears to regulate the activity of the Borna disease virus polymerase by targeting the polymerase cofactor P.


Assuntos
Vírus da Doença de Borna/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/metabolismo , Genoma Viral , RNA Viral/genética
12.
J Biol Chem ; 277(14): 12151-7, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11796712

RESUMO

Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence.


Assuntos
Núcleo Celular/metabolismo , Proteínas Virais/metabolismo , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Glutationa Transferase/metabolismo , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Sinais de Localização Nuclear , Testes de Precipitina , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA