Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Bioconjug Chem ; 34(12): 2221-2233, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054705

RESUMO

A crucial design feature for the therapeutic success of antibody-drug conjugates (ADCs) is the linker that connects the antibody with the drug. Linkers must be stable in circulation and efficiently release the drug inside the target cell, thereby having a fundamental impact on ADC pharmacokinetics and efficacy. The variety of enzymatically cleavable linkers applied in ADCs is limited, and some are believed to be associated with unwanted side effects due to the expression of cleavage-mediating enzymes in nonmalignant cells. Based on a bioinformatic screen of lysosomal enzymes, we identified α-l-iduronidase (IduA) as an interesting candidate for ADC linker cleavage because of its low expression in normal tissues and its overexpression in several tumor types. In the present study, we report a novel IduA-cleavable ADC linker using exatecan and duocarmycin as payloads. We showed the functionality of our linker system in cleavage assays using recombinant IduA or cell lysates and compared it to established ADC linkers. Subsequently, we coupled iduronide-exatecan via interchain cysteines or iduronide-duocarmycin via microbial transglutaminase (mTG) to an anti-CEACAM5 (aCEA5) antibody. The generated iduronide-exatecan ADC showed high serum stability and similar target-dependent tumor cell killing in the subnanomolar range but reduced toxicity on nonmalignant cells compared to an analogous cathepsin B-activatable valine-citrulline-exatecan ADC. Finally, in vivo antitumor activity could be demonstrated for an IduA-cleavable duocarmycin ADC. The presented results emphasize the potential of iduronide linkers for ADC development and represent a tool for further balancing out tumor selectivity and safety.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Iduronidase , Duocarmicinas , Anticorpos Monoclonais , Linhagem Celular Tumoral
2.
J Biol Chem ; 296: 100299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460651

RESUMO

The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galß1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.


Assuntos
Galactosiltransferases/química , Globosídeos/química , Toxina Shiga I/química , Triexosilceramidas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animais , Sítios de Ligação , Células CHO , Sequência de Carboidratos , Cricetulus , Escherichia coli Êntero-Hemorrágica/química , Escherichia coli Êntero-Hemorrágica/patogenicidade , Galactose/química , Galactose/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Expressão Gênica , Globosídeos/biossíntese , Globosídeos/metabolismo , Glucose/química , Glucose/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Triexosilceramidas/biossíntese
3.
Langmuir ; 38(2): 849-855, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989586

RESUMO

Sensing enzymatic sialylation provides new tools for the evaluation of pathological events and pathogen invasion. Enzymatic sialylation is usually monitored via fluorescence or metabolic labeling, which requires relatively large amounts of the glycan substrate with limited availability. Using a label-free biosensor requires smaller quantities of substrates because the interactions induce measurable changes to an interface, which can be translated into a signal. The downside of label-free biosensors is that they are very sensitive to changes at the interface, and the properties of the surface layer can play a major role. Electrochemical impedance spectroscopy was used here to follow the enzymatic sialylation of a biantennary N-glycan acceptor in mixed monolayers. The surfaces contained either neutral, positively or negatively charged, or zwitterionic functional groups. The systems were characterized by contact potential difference, ellipsometry, and contact angle analyses. We found that the characteristics of the mixed monolayer have a profound effect on the biosensing of the enzymatic sialylation. Positively charged layers were found to adsorb the enzyme under the reaction conditions. Negatively charged and zwitterionic surfaces were nonresponsive to enzymatic sialylation. Only the neutral mixed monolayers provided signals that were related directly to enzymatic sialylation. This work demonstrates the importance of appropriate interface properties for monitoring enzymatic sialylation processes.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Polissacarídeos
4.
Biomacromolecules ; 23(11): 4841-4850, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36327974

RESUMO

The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here explored the thermal stability of proteinase K at conditions applicable for polymer melt processing, given that this hydrolytic enzyme is well established for its ability to degrade poly(l-lactide) (PLLA). Using assorted spectroscopic methods and enzymatic assays, we investigated the effects of high temperatures on the structure and specific activity of proteinase K. Whereas in solution, irreversible unfolding occurred at temperatures above 75-80 °C, in the dry, bulk state, proteinase K withstood prolonged incubation at elevated temperatures. Unexpectedly little activity loss occurred during incubation at up to 130 °C, and intermediate levels of catalytic activity were preserved at up to 150 °C. The resistance of bulk proteinase K to thermal treatment was slightly enhanced by absorption into polyacrylamide (PAM) particles. Under these conditions, after 5 min at a temperature of 200 °C, which is required for the melt processing of PLLA, proteinase K was not completely denatured but retained around 2% enzymatic activity. Our findings reveal that the thermal processing of proteinase K in the dry state is principally feasible, but equally, they also identify needs and prospects for improvement. The experimental pipeline we establish for proteinase K analysis stands to benefit efforts directed to this end. More broadly, our work sheds light on enzymatically degradable polymers and the thermal processing of enzymes, which are of increasing economical and societal relevance.


Assuntos
Poliésteres , Polímeros , Endopeptidase K/metabolismo , Poliésteres/química , Polímeros/química , Temperatura
5.
J Pept Sci ; 27(1): e3283, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32885544

RESUMO

A convergent synthesis for erythropoietin (EPO) 1-28 N-glycopeptide hydrazides was developed. In this approach, EPO 1-28 peptides were synthesized on the solid phase and converted to C-terminal hydrazides after cleavage from the resin. After selective deprotection of the Asp24 side chain, the desired glycosylamine was coupled by pseudoproline-assisted Lansbury aspartylation. Although the initial yields of the EPO 1-28 glycopeptides were satisfactory, they could be markedly improved by increasing the purity of the peptide using a reversed-phase high-performance liquid chromatography (RP-HPLC) purification of the protected peptide.


Assuntos
Eritropoetina/química , Glicopeptídeos/química , Cromatografia Líquida de Alta Pressão , Técnicas de Síntese em Fase Sólida
6.
Angew Chem Int Ed Engl ; 60(49): 25922-25932, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523784

RESUMO

Recombinant human erythropoietin (EPO) is the main therapeutic glycoprotein for the treatment of anemia in cancer and kidney patients. The in-vivo activity of EPO is carbohydrate-dependent with the number of sialic acid residues regulating its circulatory half-life. EPO carries three N-glycans and thus obtaining pure glycoforms provides a major challenge. We have developed a robust and reproducible chemoenzymatic approach to glycoforms of EPO with and without sialic acids. EPO was assembled by sequential native chemical ligation of two peptide and three glycopeptide segments. The glycopeptides were obtained by pseudoproline-assisted Lansbury aspartylation. Enzymatic introduction of the sialic acids was readily accomplished at the level of the glycopeptide segments but even more efficiently on the refolded glycoprotein. Biological recognition of the synthetic EPOs was shown by formation of 1:1 complexes with recombinant EPO receptor.


Assuntos
Eritropoetina/metabolismo , Ácido N-Acetilneuramínico/biossíntese , Ácido N-Acetilneuramínico/síntese química , Sialiltransferases/metabolismo , Eritropoetina/química , Glicosilação , Humanos , Estrutura Molecular , Ácido N-Acetilneuramínico/química , Photobacterium/enzimologia , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
7.
Angew Chem Int Ed Engl ; 60(24): 13380-13387, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33756033

RESUMO

A library of glycoforms of human interleukin 6 (IL-6) comprising complex and mannosidic N-glycans was generated by semisynthesis. The three segments were connected by sequential native chemical ligation followed by two-step refolding. The central glycopeptide segments were assembled by pseudoproline-assisted Lansbury aspartylation and subsequent enzymatic elongation of complex N-glycans. Nine IL-6 glycoforms were synthesized, seven of which were evaluated for in vivo plasma clearance in rats and compared to non-glycosylated recombinant IL-6 from E. coli. Each IL-6 glycoform was tested in three animals and reproducibly showed individual serum clearances depending on the structure of the N-glycan. The clearance rates were atypical, since the 2,6-sialylated glycoforms of IL-6 cleared faster than the corresponding asialo IL-6 with terminal galactoses. Compared to non-glycosylated IL-6 the plasma clearance of IL-6 glycoforms was delayed in the presence of larger and multibranched N-glycans in most cases.


Assuntos
Glicopeptídeos/metabolismo , Interleucina-6/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Galactose/metabolismo , Glicopeptídeos/sangue , Glicopeptídeos/genética , Glicosilação , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/farmacologia , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/sangue , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Espectrometria de Massas por Ionização por Electrospray
8.
Chembiochem ; 21(22): 3212-3215, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32597008

RESUMO

In human serum immunoglobulin G (IgG), a rare modification of biantennary complex N-glycans lead to a ß1,4-galactosylated bisecting GlcNAc branch. We found that the bisecting GlcNAc on a biantennary core-fucosylated N-glycan was enzymatically galactosylated under stringent reaction conditions. Further optimizations led to an efficient enzymatic approach to this particular modification for biantennary substrates. Notably, tri- and tetra-antennary complex N-glycans were not converted by bovine galactosyltransferase. An N-glycan with a galactosylated bisecting GlcNAc was linked to a lanthanide binding tag. The pseudo-contact shifts (PCS) obtained from the corresponding Dy-complex were used to calculate the conformational preferences of the rare N-glycan. Besides two extended conformations only a single folded conformation was found.


Assuntos
Acetilglucosamina/metabolismo , Galactose/metabolismo , Polissacarídeos/biossíntese , Acetilglucosamina/química , Configuração de Carboidratos , Galactose/química , Glicosilação , Humanos , Polissacarídeos/química
9.
PLoS Biol ; 15(1): e2000080, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060820

RESUMO

Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography-mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.


Assuntos
Proteólise , Receptores de Interleucina-6/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Glicosilação , Humanos , Espaço Intracelular/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Mutação/genética , Polissacarídeos/metabolismo , Prolina/metabolismo , Domínios Proteicos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/química , Receptores de Interleucina-6/genética , Transdução de Sinais , Solubilidade , Valina/metabolismo
10.
Bioorg Chem ; 97: 103703, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143017

RESUMO

Three N-metallocenoylsphingosines with variance in the central metal (Fe, Co, Ru), the charge (neutral or cationic), and the arene ligands (Cp2, Cp*Ph) were synthesized from serine and metallocene carboxylic acids as substrate-analogous inhibitors of human acid ceramidase (AC). Their inhibitory potential was examined using the recombinant full length ASAH1 enzyme, expressed and secreted from High Five insect cells, and the fluorescent substrate Rbm14-12. All complexes inhibited AC, most strongly so ruthenium(II) complex 13a. Some antitumoral effects of the complexes, such as the interference with the microtubular and F-actin cytoskeleton of cancer cells, were correlated to their AC-inhibition, whereas others, e.g. their cytotoxicity and their induction of caspase-3/-7 activity in cancer cells, were not. All complexes accumulated preferentially in the lysosomes of cancer cells like their target AC, arrested the cells in G1 phase of the cell cycle, and displayed cytotoxicity with mostly single-digit micromolar IC50 values while inducing cancer cell apoptosis.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Ceramidase Ácida/metabolismo , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Esfingosina/síntese química
11.
J Biol Chem ; 293(52): 20249-20262, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30385505

RESUMO

Galectins compose a protein family defined by a conserved sequence motif conferring affinity for ß-galactose-containing glycans. Moreover, galectins gain higher affinity and fine-tune specificity by glycan interactions at sites adjacent to their ß-galactoside-binding site, as revealed by extensive testing against panels of purified glycans. However, in cells, galectins bind glycans on glycoproteins and glycolipids in the context of other cellular components, such as at the cell surface. Because of difficulties in characterizing natural cellular environments, we currently lack a detailed understanding of galectin-binding specificities in the cellular context. To address this challenge, we used a panel of genetically stable glycosylation mutated CHO cells that express defined glycans to evaluate the binding affinities of 10 different carbohydrate-recognition domains in galectins to N-glycans and mucin-type O-glycans. Using flow cytometry, we measured the cell-surface binding of the galectins. Moreover, we used fluorescence anisotropy to determine the galectin affinities to recombinant erythropoietin used as a reporter glycoprotein produced by the glycoengineered cells and to synthetic N-glycans with defined branch structures. We found that all galectins, apart from galectin-8N, require complex N-glycans for high-affinity binding. Galectin-8N targeted both N- and O-linked glycans with high affinity, preferring 2,3-sialylated N-acetyllactosamine (LacNAc) structures. Furthermore, we found that 2,3-sialylation suppresses high-affinity binding of select galectins, including galectin-2, -3, -4N, and -7. Structural modeling provided a basis for interpreting the observed binding preferences. These results underscore the power of a glycoengineered platform to dissect the glycan-binding specificities of carbohydrate-binding proteins.


Assuntos
Galectinas/química , Polissacarídeos/química , Animais , Células CHO , Cricetulus , Galectinas/genética , Galectinas/metabolismo , Glicosilação , Humanos , Polissacarídeos/genética , Polissacarídeos/metabolismo , Domínios Proteicos
12.
J Am Chem Soc ; 141(2): 936-944, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30543411

RESUMO

Multivalent carbohydrate-lectin interactions at host-pathogen interfaces play a crucial role in the establishment of infections. Although competitive antagonists that prevent pathogen adhesion are promising antimicrobial drugs, the molecular mechanisms underlying these complex adhesion processes are still poorly understood. Here, we characterize the interactions between the fimbrial adhesin FimH from uropathogenic Escherichia coli strains and its natural high-mannose type N-glycan binding epitopes on uroepithelial glycoproteins. Crystal structures and a detailed kinetic characterization of ligand-binding and dissociation revealed that the binding pocket of FimH evolved such that it recognizes the terminal α(1-2)-, α(1-3)-, and α(1-6)-linked mannosides of natural high-mannose type N-glycans with similar affinity. We demonstrate that the 2000-fold higher affinity of the domain-separated state of FimH compared to its domain-associated state is ligand-independent and consistent with a thermodynamic cycle in which ligand-binding shifts the association equilibrium between the FimH lectin and the FimH pilin domain. Moreover, we show that a single N-glycan can bind up to three molecules of FimH, albeit with negative cooperativity, so that a molar excess of accessible N-glycans over FimH on the cell surface favors monovalent FimH binding. Our data provide pivotal insights into the adhesion properties of uropathogenic Escherichia coli strains to their target receptors and a solid basis for the development of effective FimH antagonists.


Assuntos
Adesinas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Mananas/metabolismo , Manosídeos/metabolismo , Adesinas de Escherichia coli/química , Sítios de Ligação , Escherichia coli/química , Proteínas de Fímbrias/química , Cinética , Ligantes , Mananas/química , Manosídeos/química , Ligação Proteica , Conformação Proteica , Termodinâmica
13.
Chembiochem ; 20(15): 1914-1918, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973186

RESUMO

The biological activity of the glycoprotein hormone erythropoietin (EPO) is dependent mainly on the structure of its N-linked glycans. We aimed to readily attach defined N-glycans to EPO through copper-catalyzed azide alkyne cycloaddition. EPO variants with an alkyne-bearing non-natural amino acid (Plk) at the N-glycosylation sites 24, 38, and 83 were obtained by amber suppression followed by protein purification and refolding. Click conjugation of the alkynyl EPOs with biantennary N-glycan azides provided biologically active site-specifically modified EPO glycoconjugates.


Assuntos
Eritropoetina/síntese química , Polissacarídeos/química , Eritropoetina/química , Humanos , Modelos Moleculares , Estrutura Molecular
14.
Chemistry ; 25(69): 15759-15764, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31628819

RESUMO

A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of thioacid-containing peptides. These peptides were readily converted to complex N-glycopeptides by using a fast and chemoselective one-pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site-selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.


Assuntos
Glicopeptídeos/síntese química , Oligopeptídeos/química , Prolina/análogos & derivados , Técnicas de Síntese em Fase Sólida/métodos , Tiazóis/química , Ácidos/química , Sequência de Aminoácidos , Fluorenos/síntese química , Fluorenos/química , Glicopeptídeos/química , Oligopeptídeos/síntese química , Prolina/síntese química , Prolina/química , Compostos de Sulfidrila/química , Tiazóis/síntese química
15.
Angew Chem Int Ed Engl ; 57(32): 10178-10181, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29956878

RESUMO

The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N-glycans with α1,6-linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N-glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed ß-prism III. Three biantennary core-fucosylated N-glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6-fucosylated N-glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N-glycan flexibility upon binding.


Assuntos
Fucose/síntese química , Lectinas/química , Polissacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Fucose/análogos & derivados , Fucose/química , Modelos Moleculares
16.
Angew Chem Int Ed Engl ; 57(44): 14543-14549, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30144245

RESUMO

The occurrence of α1,6-linked core fucose on the N-glycans of mammalian glycoproteins is involved in tumor progression and reduces the bioactivity of antibodies in antibody-dependent cell-mediated cytotoxicity (ADCC). Since core-fucosylated N-glycans are difficult to isolate from natural sources, only chemical or enzymatic synthesis can provide the desired compounds for biological studies. A general drawback of chemical α-fucosylation is that the chemical assembly of α1,6-linked fucosides is not stereospecific. A robust and general method for the α-selective fucosylation of acceptors with primary hydroxy groups in α/ß ratios exceeding 99:1 was developed. The high selectivities result from the interplay of an optimized protecting group pattern of the fucosyl donors in combination with the activation principle and the reaction conditions. Selective deprotection yielded versatile azides of all mammalian complex-type core-fucosylated N-glycans with 2-4 antennae and optional bisecting GlcNAc.


Assuntos
Acetilglucosamina/química , Fucose/química , Polissacarídeos/química , Animais
17.
Angew Chem Int Ed Engl ; 56(47): 14987-14991, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28991403

RESUMO

The biological recognition of complex-type N-glycans is part of many key physiological and pathological events. Despite their importance, the structural characterization of these events remains unsolved. The inherent flexibility of N-glycans hampers crystallization and the chemical equivalence of individual branches precludes their NMR characterization. By using a chemoenzymatically synthesized tetra-antennary N-glycan conjugated to a lanthanide binding tag, the NMR signals under paramagnetic conditions discriminated all four N-acetyl lactosamine antennae with unprecedented resolution. The NMR data revealed the conformation of the N-glycan and permitted for the first time the direct identification of individual branches involved in the recognition by two N-acetyllactosamine-binding lectins, Datura stramonium seed lectin (DSL) and Ricinus Communis agglutinin (RCA120).

18.
Angew Chem Int Ed Engl ; 56(19): 5252-5257, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28378443

RESUMO

The main glycoforms of the hydrophobic lysosomal glycoprotein saposin D (SapD) were synthesized by native chemical ligation. An approach for the challenging solid-phase synthesis of the fragments was developed. Three SapD glycoforms were obtained following a general and robust refolding and purification protocol. A crystal structure of one glycoform confirmed its native structure and disulfide pattern. Functional assays revealed that the lipid-binding properties of three SapD glycoforms are highly affected by the single sugar moiety of SapD showing a dependency of the size and the type of N-glycan.


Assuntos
Carboidratos/química , Saposinas/síntese química , Saposinas/metabolismo , Configuração de Carboidratos , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Saposinas/química
19.
Angew Chem Int Ed Engl ; 55(35): 10487-92, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443163

RESUMO

The occurrence of N-glycans with a bisecting GlcNAc modification on glycoproteins has many implications in developmental and immune biology. However, these particular N-glycans are difficult to obtain either from nature or through synthesis. We have developed a flexible and general method for synthesizing bisected N-glycans of the complex type by employing modular TFAc-protected donors for all antennae. The TFAc-protected N-glycans are suitable for the late introduction of a bisecting GlcNAc. This integrated strategy permits for the first time the use of a single approach for multiantennary N-glycans as well as their bisected derivatives via imidates, with unprecedented yields even in a one-pot double glycosylation. With this new method, rare N-glycans of the bisected type can be obtained readily, thereby providing defined tools to decipher the biological roles of bisecting GlcNAc modifications.

20.
Glycobiology ; 25(6): 607-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25573275

RESUMO

We determined the specificity of BTL, a lectin from the red marine alga Bryothamnion triquetrum, toward fucosylated oligosaccharides. BTL showed a strict specificity for the core α1,6-fucosylation, which is an important marker for cancerogenesis and quality control of therapeutical antibodies. The double fucosylation α1,6 and α1,3 was also recognized, but the binding was totally abolished in the sole presence of the α1,3-fucosylation. A more detailed analysis of the specificity of BTL showed a preference for bi- and tri-antennary nonbisected N-glycans. Sialylation or fucosylation at the nonreducing end of N-glycans did not affect the recognition by the lectin. BTL displayed a strong affinity for a core α1,6-fucosylated octasaccharide with a Kd of 12 µM by titration microcalorimetry. The structural characterization of the interaction between BTL and the octasaccharide was obtained by STD-NMR. It demonstrated an extended epitope for recognition that includes the fucose residue, the distal GlcNAc and one mannose residue. Recombinant rBTL was obtained in Escherichia coli and characterized. Its binding properties for carbohydrates were studied using hemagglutination tests and glycan array analysis. rBTL was able to agglutinate rabbit erythrocytes with strong hemagglutination activity only after treatment with papain and trypsin, indicating that its ligands were not directly accessible at the cell surface. The hemagglutinating properties of rBTL confirm the correct folding and functional state of the protein. The results show BTL as a potent candidate for cancer diagnosis and as a reagent for the preparation and quality control of antibodies lacking core α1,6-fucosylated N-glycans.


Assuntos
Proteínas de Algas/química , Fucose/química , Lectinas/química , Polissacarídeos/química , Rodófitas/química , Proteínas de Algas/biossíntese , Proteínas de Algas/isolamento & purificação , Animais , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Eritrócitos/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Lectinas/biossíntese , Lectinas/isolamento & purificação , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA