Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 31(2): 350-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31879336

RESUMO

BACKGROUND: Myeloperoxidase released after neutrophil and monocyte activation can generate reactive oxygen species, leading to host tissue damage. Extracellular glomerular myeloperoxidase deposition, seen in ANCA-associated vasculitis, may enhance crescentic GN through antigen-specific T and B cell activation. Myeloperoxidase-deficient animals have attenuated GN early on, but augmented T cell responses. We investigated the effect of myeloperoxidase inhibition, using the myeloperoxidase inhibitor AZM198, to understand its potential role in treating crescentic GN. METHODS: We evaluated renal biopsy samples from patients with various forms of crescentic GN for myeloperoxidase and neutrophils, measured serum myeloperoxidase concentration in patients with ANCA-associated vasculitis and controls, and assessed neutrophil extracellular trap formation, reactive oxygen species production, and neutrophil degranulation in ANCA-stimulated neutrophils in the absence and presence of AZM198. We also tested the effect of AZM198 on ANCA-stimulated neutrophil-mediated endothelial cell damage in vitro, as well as on crescentic GN severity and antigen-specific T cell reactivity in the murine model of nephrotoxic nephritis. RESULTS: All biopsy specimens with crescentic GN had extracellular glomerular myeloperoxidase deposition that correlated significantly with eGFR and crescent formation. In vitro, AZM198 led to a significant reduction in neutrophil extracellular trap formation, reactive oxygen species production, and released human neutrophil peptide levels, and attenuated neutrophil-mediated endothelial cell damage. In vivo, delayed AZM198 treatment significantly reduced proteinuria, glomerular thrombosis, serum creatinine, and glomerular macrophage infiltration, without increasing adaptive T cell responses. CONCLUSIONS: Myeloperoxidase inhibition reduced neutrophil degranulation and neutrophil-mediated endothelial cell damage in patients with ANCA-associated vasculitis. In preclinical crescentic GN, delayed myeloperoxidase inhibition suppressed kidney damage without augmenting adaptive immune responses, suggesting it might offer a novel adjunctive therapeutic approach in crescentic GN.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/imunologia , Células Endoteliais/patologia , Glomerulonefrite/tratamento farmacológico , Ativação de Neutrófilo/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Imunidade Adaptativa/efeitos dos fármacos , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Degranulação Celular/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peroxidase/sangue , Peroxidase/metabolismo
2.
Am J Physiol Renal Physiol ; 319(2): F292-F303, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686520

RESUMO

In proteinuric renal diseases, excessive plasma nonesterified free fatty acids bound to albumin can leak across damaged glomeruli to be reabsorbed by renal proximal tubular cells and cause inflammatory tubular cells damage by as yet unknown mechanisms. The present study was designed to investigate these mechanisms induced by palmitic acid (PA; one of the nonesterified free fatty acids) overload. Our results show that excess PA stimulates ATP release through the pannexin 1 channel in human renal tubule epithelial cells (HK-2), increasing extracellular ATP concentration approximately threefold compared with control. The ATP release is dependent on caspase-3/7 activation induced by mitochondrial reactive oxygen species. Furthermore, extracellular ATP aggravates PA-induced monocyte chemoattractant protein-1 secretion and monocyte infiltration of tubular cells, enlarging the inflammatory response in both macrophages and HK-2 cells via the purinergic P2X7 receptor-mammalian target of rapamycin-forkhead box O1-thioredoxin-interacting protein/NOD-like receptor protein 3 inflammasome pathway. Hence, PA increases mitochondrial reactive oxygen species-induced ATP release and inflammatory stress, which cause a "first hit," while ATP itself is a "second hit" in amplifying the renal tubular inflammatory response. Thus, inhibition of ATP release or the purinergic P2X7 receptor may be an approach to reduce renal inflammation and improve renal function.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Inflamassomos/metabolismo , Túbulos Renais/metabolismo , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA