Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 46(1): 54-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372658

RESUMO

RESEARCH QUESTION: Can volatile organic compounds (VOC) be modelled in an IVF clinical setting? DESIGN: The study performed equilibrium modelling of low concentrations of airborne VOC partitioning from the air phase into the oil cover layer into the water-based culture media and into/onto the embryo (air-oil-water-embryo). The air-phase VOC were modelled based on reported VOC concentrations found in modern assisted reproductive technology (ART) suites, older IVF clinics, and hospitals, as well as at 10 parts per billion (ppb) and 100 ppb for all compounds. The modelling was performed with 23 documented healthcare-specific VOC. RESULTS: Based on the partitioning model, seven compounds (acrolein, formaldehyde, phenol, toluene, acetaldehyde, ethanol and isopropanol) should be of great concern to the embryologist and clinician. Acrolein, formaldehyde, phenol, toluene and acetaldehyde are the VOC with the most potent cytotoxic factor and the highest toxic VOC concentration in media. In addition, ethanol and isopropanol are routinely found in the greatest air-phase concentrations and modelled to have the highest water-based culture concentrations. CONCLUSIONS: The results of the equilibrium partitioning modelling of VOC provides a fundamental understanding of how airborne VOC partition from the air phase and negatively influence human IVF outcomes. The results presented here are based on the theoretical model and the values presented have not yet been measured in a laboratory or clinical setting. High air-phase concentrations and toxic concentrations of VOC in culture media are likely indicators of poor clinical outcomes. Based on this model, improved air quality in IVF laboratories reduces the chemical burden imparted on embryos, which supports findings of improved IVF outcomes with reduced air-phase VOC concentrations.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Laboratórios , Acroleína , 2-Propanol , Técnicas de Reprodução Assistida , Acetaldeído/análise , Formaldeído/análise , Fertilização in vitro , Etanol , Tolueno , Fenóis , Água , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos
2.
J Gerontol A Biol Sci Med Sci ; 78(12): 2325-2332, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132185

RESUMO

BACKGROUND: Long-term care facilities (LTCFs) are constantly working to reduce sources of infectious pathogens to improve resident care. LTCF residents are particularly susceptible to health care-associated infections (HAIs), many of which originate from the air. An advanced air purification technology (AAPT) was designed to comprehensively remediate volatile organic compounds (VOCs) and all airborne pathogens including all airborne bacteria, fungi, and viruses. The AAPT contains a unique combination of proprietary filter media, high-dose ultraviolet germicidal irradiation, and high-efficiency particulate air (HEPA) filtration. METHODS: The AAPT was installed in an LTCF's heating, ventilation, and air-conditioning ductwork and 2 floors were studied: the study floor with comprehensive AAPT remediation and HEPA filtration and the control floor with only HEPA filtration. VOC loading and airborne and surface pathogen loading were measured in 5 locations on both floors. Clinical metrics such as HAI rates were also studied. RESULTS: There was a statistically significant 98.83% reduction in airborne pathogens, which are responsible for illness and infection, an 89.88% reduction in VOCs, and a 39.6% reduction in HAIs. Surface pathogen loading was reduced in all locations except 1 resident room where the detected pathogens were linked to direct touch. CONCLUSIONS: The removal of airborne and surface pathogens by the AAPT led to a dramatic reduction in HAIs. The comprehensive removal of airborne contaminants has a direct positive impact on resident wellness and quality of life. It is critical that LTCFs incorporate aggressive airborne purification methods with their current infection control protocols.


Assuntos
Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Assistência de Longa Duração , Qualidade de Vida , Bactérias , Casas de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA