Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(3): e0240821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604233

RESUMO

Animal venoms are considered sterile sources of antimicrobial compounds with strong membrane-disrupting activity against multidrug-resistant bacteria. However, venomous bite wound infections are common in developing nations. Investigating the envenomation organ and venom microbiota of five snake and two spider species, we observed venom community structures that depend on the host venomous animal species and evidenced recovery of viable microorganisms from black-necked spitting cobra (Naja nigricollis) and Indian ornamental tarantula (Poecilotheria regalis) venoms. Among the bacterial isolates recovered from N. nigricollis, we identified two venom-resistant, novel sequence types of Enterococcus faecalis whose genomes feature 16 virulence genes, indicating infectious potential, and 45 additional genes, nearly half of which improve bacterial membrane integrity. Our findings challenge the dogma of venom sterility and indicate an increased primary infection risk in the clinical management of venomous animal bite wounds. IMPORTANCE Notwithstanding their 3 to 5% mortality, the 2.7 million envenomation-related injuries occurring annually-predominantly across Africa, Asia, and Latin America-are also major causes of morbidity. Venom toxin-damaged tissue will develop infections in some 75% of envenomation victims, with E. faecalis being a common culprit of disease; however, such infections are generally considered to be independent of envenomation. Here, we provide evidence on venom microbiota across snakes and arachnida and report on the convergent evolution mechanisms that can facilitate adaptation to black-necked cobra venom in two independent E. faecalis strains, easily misidentified by biochemical diagnostics. Therefore, since inoculation with viable and virulence gene-harboring bacteria can occur during envenomation, acute infection risk management following envenomation is warranted, particularly for immunocompromised and malnourished victims in resource-limited settings. These results shed light on how bacteria evolve for survival in one of the most extreme environments on Earth and how venomous bites must be also treated for infections.


Assuntos
Aracnídeos , Peçonhas , Animais , Ásia , Bactérias/genética , Serpentes
2.
Methods Mol Biol ; 2036: 283-305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410804

RESUMO

High-throughput sequencing of the products of 5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) reactions (RACE-SEQ) enables the mapping and digital enumeration of expected and novel 5' ends in RNA molecules. The resulting data are essential in documenting the mechanism of action and precision of endonucleolytically active, RNA-targeting drugs such as RNase H-active antisense or small interfering RNA. When applied to error-prone replication systems such as RNA viruses or in vitro RNA replicon systems, the method can additionally report the relative susceptibility of known and unknown polymorphisms to a prospective sequence-specific drug, making it a powerful tool in patient selection and stratification as well as resistance prediction.We describe the preparation of sequencing libraries for ultra-high depth 5' RLM-RACE analysis on two popular second-generation high-throughput sequencing platforms (Illumina, Ion Torrent) and supply a detailed bioinformatics analysis pipeline for target site activity definition and enumeration. We further illustrate how the pipeline can be simply modified to generate polymorphism-specific drug susceptibility data from in vitro replicon experiments (RACE-SEQ-MM), in a patient-free manner, to cover both known and unknown target site variants in the population.


Assuntos
DNA Complementar , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo Genético , RNA , Biologia Computacional/métodos , Terapia Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , MicroRNAs/genética , Interferência de RNA
3.
Acta Neuropathol Commun ; 7(1): 45, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885274

RESUMO

Over the past two decades a number of studies have demonstrated activity of the retroviral enzyme reverse transcriptase in the serum of patients with sporadic amyotrophic lateral sclerosis (ALS). Known human exogenous retroviruses such as HIV-1 have been eliminated as possible sources of this activity and investigators have therefore considered the possibility that human endogenous retroviruses (HERVs) might be involved. HERV-K (HML-2) is the most recent retroviral candidate to be proposed following the observation of elevated HERV-K expression in cortical and spinal neurons of ALS patients and the demonstration of HERV-K envelope protein neurotoxicity in vitro and in transgenic mice. This retroviral hypothesis is an attractive one, not least because it raises the possibility that ALS might become treatable using antiretroviral drugs. In the present study we have attempted independent confirmation of the observation that HERV-K RNA levels are elevated in ALS brain. Total RNA was extracted from the postmortem premotor cortex of 34 patients with ALS and 23 controls. Quantitative real-time reverse transcription PCR (RT-qPCR) was performed according to the MIQE guidelines using HERV-K gag, pol and env primer sets. Data was analysed by the 2-∆∆Ct method with normalisation against two reference genes, GAPDH and XPNPEP1. Geometric mean HERV-K RNA expression levels in the premotor cortex of ALS patients were not found to be different from the expression levels in non-ALS controls. Our findings do not confirm the recently reported association between elevated cortical HERV-K RNA levels and ALS, and thus raise doubts about the role of this endogenous retrovirus in ALS pathogenesis. The results of this study may have implications for ongoing clinical trials aiming to suppress HERV-K activity with antiretroviral drugs.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Córtex Motor/metabolismo , RNA/biossíntese , Proteínas Virais/biossíntese , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/patologia , RNA/genética , Proteínas Virais/genética
4.
Pharmacol Ther ; 169: 83-103, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27771436

RESUMO

The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.


Assuntos
Pneumopatias/tratamento farmacológico , Terapia de Alvo Molecular , Oligonucleotídeos/administração & dosagem , Animais , Desenho de Fármacos , Humanos , Pneumopatias/genética , Pneumopatias/fisiopatologia , Oligonucleotídeos/farmacologia , RNA/metabolismo , Interferência de RNA , Splicing de RNA , RNA não Traduzido/metabolismo
5.
Mol Ther Nucleic Acids ; 9: 22-33, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246301

RESUMO

Low allelic and clonal variability among endogenous RNAi targets has focused mismatch tolerance studies to RNAi-active guide strands. However, the inherent genomic instability of RNA viruses such as hepatitis C virus (HCV) gives rise to quasi-species mutants within discrete clones: this facilitates mismatch tolerance studies from a target perspective. We recently quantified the slicing imprecision of Argonaute 2 using small interfering RNA (siRNA) analogs of the DNA-directed RNAi drug TT-034 and next-generation sequencing of 5' RNA ligase-mediated rapid amplification of cDNA ends (RACE-SEQ). Here, we present an open-source, customizable, and computationally light RACE-SEQ bioinformatic pipeline, describing adaptations that semiquantitatively report the impact of RNAi hybridization site mismatches from the target perspective. The analysis shows that Argonaute 2 has a substitution-specific, 3- to 5-log activity window between fully complementary targets and targets with mismatches across positions 10-11. It further focuses the endonucleotic Slicer imprecision around positions 13-17, demonstrating its dependence on guide strand central region complementarity, and potentiation by even a single mismatch. We further propose pharmacogenomics value in testing endogenous targets using recombinant replicon systems and RACE-SEQ to report the pharmacodynamics of sequence-specific oligonucleotide therapeutics against all possible polymorphisms in a population, in a minimally biased, patient-free manner.

6.
Chem Sci ; 8(11): 7780-7797, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29163915

RESUMO

The West African Ebola virus outbreak underlined the importance of delivering mass diagnostic capability outside the clinical or primary care setting in effectively containing public health emergencies caused by infectious disease. Yet, to date, there is no solution for reliably deploying at the point of need the gold standard diagnostic method, real time quantitative reverse transcription polymerase chain reaction (RT-qPCR), in a laboratory infrastructure-free manner. In this proof of principle work, we demonstrate direct performance of RT-qPCR on fresh blood using far-red fluorophores to resolve fluorogenic signal inhibition and controlled, rapid freeze/thawing to achieve viral genome extraction in a single reaction chamber assay. The resulting process is entirely free of manual or automated sample pre-processing, requires no microfluidics or magnetic/mechanical sample handling and thus utilizes low cost consumables. This enables a fast, laboratory infrastructure-free, minimal risk and simple standard operating procedure suited to frontline, field use. Developing this novel approach on recombinant bacteriophage and recombinant human immunodeficiency virus (HIV; Lentivirus), we demonstrate clinical utility in symptomatic EBOV patient screening using live, infectious Filoviruses and surrogate patient samples. Moreover, we evidence assay co-linearity independent of viral particle structure that may enable viral load quantification through pre-calibration, with no loss of specificity across an 8 log-linear maximum dynamic range. The resulting quantitative rapid identification (QuRapID) molecular diagnostic platform, openly accessible for assay development, meets the requirements of resource-limited countries and provides a fast response solution for mass public health screening against emerging biosecurity threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA