Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(46): 29221-29235, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30427330

RESUMO

Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min-1, while a combination of different kinetics models, including Augis-Bennett, Borchardt-Daniels, Johnson-Mehl-Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435-450 kJ mol-1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.

2.
J Nanosci Nanotechnol ; 16(2): 1420-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433598

RESUMO

In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.


Assuntos
Anti-Infecciosos , Substitutos Ósseos , Durapatita , Escherichia coli/crescimento & desenvolvimento , Nanoestruturas/química , Staphylococcus aureus/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Cobalto/química , Cobalto/farmacologia , Durapatita/química , Durapatita/farmacologia
3.
J Nanosci Nanotechnol ; 15(2): 1538-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353688

RESUMO

Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.


Assuntos
Substitutos Ósseos/síntese química , Durapatita/química , Fulerenos/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Cristalização/métodos , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 29(50): 15698-703, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24283573

RESUMO

Herein, we report a quick and simple synthesis of water-soluble gold nanoparticles using a HAuCl4 and oleylamine mixture. Oleylamine serves as a reduction agent as well as a stabilizer for nanoparticle surfaces. The particle sizes can be adjusted by modulating reaction temperature and time. Solvothermal reduction of HAuCl4 with oleylamine can be confirmed by measuring the product in Fourier transform infrared (FTIR) spectroscopy. The plasmon band shifting from yellow to red confirms a nanosized particle formation. Amide bonds on the surface of the nanoparticles formed hydrogen bonds with one another, resulting in a hydrophobic monolayer. Particles dispersed well in nonpolar organic solvents, such as in hexane or toluene, by brief sonication. Next, we demonstrated the transfer of gold nanoparticles into water by lipid capsulation using 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (MHPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy polyethylene glycol)-2000 (DPPE-PEG2k), and 1,2-dioleoyl-sn-glycero-3-N-{5-amino-1-carboxypentyl}iminodiacetic acid succinyl nickel salt [DGS-NTA(Ni)]. The particle concentration can be obtained using an absorbance in ultraviolet-visible (UV-vis) spectra (at 420 nm). Instrumental analyses using transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) analysis, dynamic light scattering (DLS), and FTIR confirmed successful production of gold nanoparticles and fair solubility in water. Prepared gold particles were selectively clustered via engineered ferritin nanocages that provide multiple conjugation moieties. A total of 5-6 gold nanoparticles were clustered on a single ferritin nanocage confirmed in TEM. Reported solvothermal synthesis and preparation of gold nanoclusters may serve as an efficient, alternate way of preparing water-soluble gold nanoparticles, which can be used in a wide variety of biomedical applications.


Assuntos
Cloretos/química , Ferritinas/química , Compostos de Ouro/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Solventes/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Mater Sci Mater Med ; 24(2): 343-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23090835

RESUMO

Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.


Assuntos
Cobalto/química , Durapatita/química , Mandíbula/fisiologia , Nanopartículas Metálicas/química , Osteoporose/fisiopatologia , Animais , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Células CACO-2 , Células Cultivadas , Cobalto/administração & dosagem , Cobalto/farmacologia , Durapatita/farmacologia , Feminino , Regeneração Tecidual Guiada/instrumentação , Humanos , Doenças Maxilomandibulares/fisiopatologia , Doenças Maxilomandibulares/terapia , Mandíbula/efeitos dos fármacos , Mandíbula/patologia , Reconstrução Mandibular/instrumentação , Nanopartículas Metálicas/uso terapêutico , Camundongos , Osteoporose/terapia , Ratos , Ratos Wistar
6.
J Mater Sci Mater Med ; 21(1): 231-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19707858

RESUMO

The purpose of the study presented in this paper has been to examine the possibility of the synthesis of a new nanoparticulate system for controlled and systemic drug delivery with double effect. In the first step, a drug is released from bioresorbable polymer; in the second stage, after resorption of the polymer, non-bioresorbable calcium phosphate remains the chief part of the particle and takes the role of a filler, filling a bone defect. The obtained tigecycline-loaded calcium-phosphate(CP)/poly(DL-lactide-co-glycolide)(PLGA) nanoparticles contain calcium phosphate coated with bioresorbable polymer. The composite was analyzed by FT-IR, XRD and AFM methods. The average particle size of the nanocomposite ranges between 65 and 95 nm. Release profiles of tigecycline were obtained by UV-VIS spectroscopy in physiological solution at 37 degrees C. Experimental results were analyzed using Peppas and Weibull mathematical models. Based on kinetic parameters, tigecycline release was defined as non-Fickian transport. The cytotoxicity of the nanocomposite was examined on standard cell lines of MC3T3-E1, in vitro. The obtained low values of lactate dehydrogenase (LDH) activity (under 37%) indicate low cytotoxicity level. The behaviour of the composite under real-life conditions was analyzed through implantation of the nanocomposite into living organisms, in vivo. The system with the lowest tigecycline content proved to be an adequate system for local and controlled release. Having in mind the registered antibiotics concentration in other tissues, delivery systems with a higher tigecycline content show both local and systemic effects.


Assuntos
Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Minociclina/análogos & derivados , Nanoestruturas/química , Ácido Poliglicólico/química , Animais , Antibacterianos/farmacocinética , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Portadores de Fármacos , Implantes de Medicamento , Humanos , Teste de Materiais , Minociclina/farmacocinética , Modelos Biológicos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Tigeciclina
7.
Nanotechnology ; 20(33): 335102, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19636100

RESUMO

Nanoparticles of poly(DL-lactide-co-glycolide) (PLGA) in the size range 90-150 nm were produced using the physicochemical method with solvent/non-solvent systems. The encapsulation of the ascorbic acid in the polymer matrix was performed by homogenization of the water and organic phases. In vitro degradation and release tests of PLGA nanoparticles with and without encapsulated ascorbic acid were studied for more than 60 days in PBS and it has been determined that PLGA completely degrades within this period, fully releasing all encapsulated ascorbic acid. The cytotoxicity of PLGA and PLGA/ascorbic acid 85/15% nanoparticles was examined with human hepatoma cell lines (HepG2 ECACC), in vitro. The obtained results indicate that neither PLGA nanospheres nor PLGA/ascorbic acid 85/15% nanoparticles significantly affected the viability of the HepG2 cells. The investigation of the distribution and pharmacokinetics of PLGA is crucial for the effective prediction of host responses to PLGA in particular applications. Thus we present a method of labeling PLGA nanospheres and PLGA/ascorbic acid 85/15 wt% nanoparticles by (99m)Tc which binds outside, leaving the cage intact. This enables a quick and convenient investigation of the pharmacological behavior and metabolism of PLGA. The biodistribution of (99m)Tc-labeled PLGA particles with and without encapsulated ascorbic acid after different periods of time of their installation into rats was examined. PLGA nanospheres with encapsulated ascorbic acid exhibit prolonged blood circulation accompanied by time-dependent reduction in the lungs, liver and spleen, and addition in the kidney, stomach and intestine. The samples were characterized by x-ray diffraction, scanning electron microscopy, stereological analysis, transmission electron microscopy, ultraviolet spectroscopy and instant thin layer chromatography.


Assuntos
Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Nanosferas/química , Ácido Poliglicólico/metabolismo , Ácido Poliglicólico/farmacologia , Coloração e Rotulagem/métodos , Animais , Ácido Ascórbico/química , Ácido Ascórbico/farmacocinética , Soluções Tampão , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cinética , Ácido Láctico/farmacocinética , Nanosferas/ultraestrutura , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Wistar , Espectrofotometria Ultravioleta , Compostos de Tecnécio , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Difração de Raios X
8.
Toxicol Res (Camb) ; 8(2): 287-296, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30997028

RESUMO

Reconstruction of bone defects with the use of biomaterials based on hydroxyapatite (HAp) has been a popular approach in medicine and dentistry. Most often the process of new bone formation is analyzed with the focus only on the region of the reconstructed defect. The effects of the therapy on distant organs have been rarely reported in the literature, especially not in synergy with the exposure to other bioactive chemicals. In this study, reconstruction of the mandibular bone in vivo using poly-lactide-co-glycolide-coated HAp (HAp/PLGA) nanoparticles was monitored with a simultaneous histopathological analysis of distant organs, specifically kidney and liver parenchyma. Heavy metals are among the most prominent environmental pollutants and have a high affinity for the crystal lattice of HAp, where they get incorporated by replacing calcium ions. Lead (Pb) and cadmium (Cd) are two such metals that can be found in food, water and air, but are most commonly present in cigarette smoke, the frequent contaminant of hospital settings in the developing world. The influence of their presence in the repaired bone on the content of calcium (Ca) in the reconstructed bone defect was analyzed, along with the histopathological changes in liver and kidneys. A study performed on 24 female Wistar rats demonstrated that the reconstruction of mandibular bone defects using HAp/PLGA particles induced an increase in the content of Ca in the newly created bone without causing any pathological changes to the liver and the kidneys. The presence of Pb and Cd in the defects reconstructed with HAp/PLGA nanoparticles impeded the regenerative process and led to a severe and irreversible damage to the liver and kidney parenchyma.

9.
RSC Adv ; 9(30): 17165-17178, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35519876

RESUMO

ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g-1, compared to ZnO (10.4 mA g-1) and ZnO/F127 photoanodes (20 mA g-1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm-2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron-hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.

10.
Sci Rep ; 9(1): 16305, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705047

RESUMO

Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.

11.
Microsc Res Tech ; 71(2): 86-92, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17937390

RESUMO

Biodegradable microspheres such as those made of poly-D,L-lactide (PDLLA) are widely investigated delivery systems for drugs or antigens. The aim of this study was to examine experimental conditions in order to produce PDLLA microspheres with the best properties for controlled and sustained drug delivery by the modified precipitation method. For this purpose, the following parameters were varied: co-solvent (methanol or ethanol), the concentration of stabilizer polyvinyl alcohol (PVA), chloroform-to-water ratio and the speed and time of homogenization. Scanning electron microscopy (SEM) and stereological analysis were used to characterize the particles. The average size and morphology of the microspheres varied substantially with preparation conditions from 8.44-1.25 microm. Results showed that the smallest particles were obtained with methanol, 1% PVA and with 10 min of homogenization at 21,000 rpm.


Assuntos
Precipitação Química , Ácido Láctico , Microesferas , Polímeros , Microscopia Eletrônica de Varredura , Poliésteres , Potyvirus
12.
Mater Sci Eng C Mater Biol Appl ; 89: 371-377, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752109

RESUMO

An androstane (17ß-hydroxy-17α-picolyl-androst-5-en-3ß-yl-acetate (derivative A)) cancer inhibitor was successfully captured in a carrier made of nano-sized hydroxyapatite (HAp) coated with chitosan-PLGA polymer blends (Ch-PLGA). In our previous studies, we demonstrated that it was convenient to use spherical HAp/Ch-PLGA carriers as vehicles to target the lungs following intravenous administration. In this study, we used emulsification and subsequent freeze-drying to load the spherical HAp/Ch-PLGA carriers with varying contents of the derivative A, in order to examine the selective toxicity towards cancerous/healthy lung cells. The XRD and FT-IR techniques confirmed the drug loading process, and the content of the poorly water soluble derivative A was estimated directly via the DSC technique. The particles were spherical in shape with the d50 distribution varying between 167 and 231 nm, whereas the content of the derivative A ranged from 6.5 to 19.3 wt%. Cell-selective cytotoxicity was examined simultaneously on two cell lines: human lung carcinoma (A549 ATCC CCL 185) and human lung fibroblasts (MRC-5 ATCC CCL 171). All particles exhibited nearly three times larger cytotoxicity towards cancer cells (A549) than towards healthy cells (MRC5), where the particles with the derivative A content of 6.5 wt% allowed for the viability of healthy cells >80%. Ninety-six hours after the treatment of cells with particles with different contents of derivative A (after incubation and recovery), recovery was faster in damaged healthy cells than in cancerous cells.


Assuntos
Androstanos/química , Quitosana/química , Durapatita/química , Ácido Láctico/química , Nanocompostos/química , Ácido Poliglicólico/química , Células A549 , Androstanos/metabolismo , Androstanos/farmacologia , Varredura Diferencial de Calorimetria , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/patologia , Microscopia de Força Atômica , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Mater Chem B ; 6(43): 6957-6968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30931125

RESUMO

Low targeting efficiency and fast metabolism of antineoplastic drugs are hindrances to effective chemotherapies and there is an ongoing search for better drugs, but also better carriers. Steroid derivatives, 3ß-hydroxy-16-hydroxymino-androst-5-en-17-one (A) and 3ß,17ß-dihydroxy-16-hydroxymino-androst-5-ene (B) as cancer growth inhibitors were chemically synthesized and captured in a carrier composed of hydroxyapatite (HAp) nanoparticles coated with chitosan oligosaccharide lactate (ChOLS). The only difference between the two derivatives is that A has a carbonyl group at the C17 position of the five-membered ring and B has a hydroxyl. This small difference in the structure resulted not only in different physicochemical properties of the A- and B-loaded HAp/ChOSL, but also in different biological activities. The morphology of drug-loaded HAp/ChOSL particles was spherical, but the size depended on the drug identity: d50=138 nm for A-loaded HAp/ChOSL and d50=223 nm for B-loaded HAp/ChOSL. Cell-selective toxicity was tested against human breast carcinoma (MCF7 and MDA-MB-231), human lung carcinoma (A549) and human lung fibroblasts (MRC-5). The small selectivity of pure derivatives A and B toward breast cancer cells became drastically increased when they were delivered using HAp/ChOSL particles. Whereas the ratio of the cytotoxicity imposed onto breast cancer cells and the cytotoxicity imposed onto healthy MRC-5 fibroblasts ranged from 1.5 to 1.7 for pure A and from 1.5 to 2.3 for pure derivative B depending on the concentration, it increased to 5.4 for A-loaded HAp/ChOSL and 5.1 for B-loaded HAp/ChOSL. FACS analysis demonstrated poor uptake of HAp/ChOSL particles by MCF7 cells, suggesting that the drug release occurs extracellularly. The augmented activity of the drugs was most likely due to sustained release, although the favorable positive charge of the carrier, allowing it to adhere to the negatively charged plasma membrane and release the drugs steadily and directly to the hydrophobic cell membrane milieu, was delineated as a possible complementary mechanism.

14.
Colloids Surf B Biointerfaces ; 59(2): 215-23, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17596919

RESUMO

Ascorbic acid (vitamin C) is essential for preserving optimal health and is used by the body for many purposes. The problem is that ascorbic acid easily decomposes into biologically inactive compounds making its use very limited in the field of pharmaceuticals, dermatological and cosmetics. By encapsulating the ascorbic acid into a polymer matrix it is assumed that its chemical instability can be overcome as well as higher, more efficient and equally distributed concentration throughout extended period of time can be achieved. This paper is describing the process of obtaining poly(dl-lactide-co-glycolide) (DLPLG) nanospheres (110-170 nm) using chemical method with solvent/non-solvent systems where obtained solutions have been centrifuged. The encapsulation of the ascorbic acid in the polymer matrix is performed by homogenisation of water and organic phases. Nanoparticles of the copolymer DLPLG with the different contents of the ascorbic acid have different morphological characteristics, i.e. variable degree of uniformity, agglomeration, sizes and spherical shaping. The degradation of the nanospheres of DLPLG, DLPLG/ascorbic acid nanoparticles and release rate of the ascorbic acid were studied for 8 weeks in a physiological solution (0.9% sodium chloride in water). The samples have been characterised by infrared spectroscopy (IR), scanning electron microscopy (SEM), stereological analysis and ultraviolet (UV) spectroscopy.


Assuntos
Ácido Ascórbico , Nanosferas/química , Poliésteres/química , Ácido Ascórbico/administração & dosagem , Cápsulas/administração & dosagem , Cápsulas/química , Sistemas de Liberação de Medicamentos , Microscopia Eletrônica de Varredura , Nanosferas/administração & dosagem , Nanosferas/ultraestrutura , Poliésteres/administração & dosagem , Cloreto de Sódio , Soluções
15.
J Biomater Appl ; 21(3): 317-28, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17229816

RESUMO

Lost bone tissue due to osteoporosis makes dentistry very difficult. The aim of thisstudy is to reconstruct the bone tissue with composite biomaterials and to estimate the optical density and alveolar ridge height of the mandible. Research is conducted on 30 postmenopausal women aged from 46 to 62 years, with diagnosed osteoporosis and defects in alveolar bones caused by extraction of paradontopathic teeth, enucleation of cysts and periapical changes, extraction of impacted teeth,or by trauma.Biphasic calcium phosphate/poly-DL-lactide-co-glycolide (BCP/PLGA) composite is implanted into the defects of alveolar bones. Six weeks after implantation of BCP/PLGA, the alveolar bone density in the region of premolars on the experimental side of the jaw is found to be lower than that on the untreated, control, side of the jaw. On thecontrary, 24 weeks after implantation, it is significantly higher compared with the density of the control side. A significant increase in optical density of alveolar bones in the region of premolars on the experimental side compared with the control one is noticed. These results indicate a high level of osteoregeneration and osteoblast activity. Synthetic BCP/PLGA composite belongs to the group of biomaterials, which facilitate formation of new bones and rehabilitation of alveolar bones weakened by osteoporosis. Because of its osteoconductive characteristics, BCP/PLGA composite is supposed to be the material of choice for replacement of bone tissue in the future.


Assuntos
Substitutos Ósseos/uso terapêutico , Fosfatos de Cálcio/uso terapêutico , Ácido Láctico/uso terapêutico , Doenças Mandibulares/terapia , Osteoporose/terapia , Ácido Poliglicólico/uso terapêutico , Polímeros/uso terapêutico , Adulto , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Feminino , Humanos , Ácido Láctico/química , Doenças Mandibulares/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Radiografia , Resultado do Tratamento
16.
Microsc Res Tech ; 69(12): 976-82, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17013913

RESUMO

Reconstruction of bone defects is one of the major therapeutic goals in various clinical fields. Bone replacement materials must satisfy a number of criteria. Biological criteria are biocompatibility, controlled biodegradability, and osteoconductive or even osteogenic potential. The material should have a three-dimensional structure with an interconnected pore system so as to permit cell growth and transport of substances. The surface must permit cell adhesion and proliferation. Composite biomaterials have enormous potential for natural bone tissue reparation, filling and augmentation. Calcium hydroxyapatite/polymer composite biomaterials belong to this group of composites and, because of their osteoconductive and biocompatible properties, can be successfully implemented within bone tissue reparations. In this study, possible differences between BCP/DLPLG, pure BCP, and Bio-Oss materials were examined in vitro. During overnight incubations, fibroblast and fibroblast-like cells (L929, MRC5) were able to adhere, spread, and remain viable on BCP, BCP/PLGA, and Bio-Oss discs, as was evidenced by using light- and LVSEM-microscopy. Inhibiting influence over the cell growth is more pronounced in the cases of BCP usage on both cell lines--41.29% for L929 and 43.08% for MRC-5 cells. MRC-5 cells are, within the given experimental conditions, less sensitive on inhibiting effects for the materials BCP/PLGA and Bio-Oss (10.13% and 10.76%, respectively) than for the L929 cell lines (23.02% and 15.44%, respectively).


Assuntos
Materiais Biocompatíveis/toxicidade , Substitutos Ósseos/toxicidade , Fosfatos de Cálcio/toxicidade , Fibroblastos/ultraestrutura , Ácido Láctico/toxicidade , Ácido Poliglicólico/toxicidade , Polímeros/toxicidade , Animais , Adesão Celular , Células Cultivadas , Fibroblastos/fisiologia , Humanos , Hidroxiapatitas/toxicidade , Células L , Camundongos , Microscopia Eletrônica de Varredura , Minerais/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
17.
Mater Sci Eng C Mater Biol Appl ; 60: 357-364, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706541

RESUMO

Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.


Assuntos
Anti-Infecciosos/química , Quitosana/química , Durapatita/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Polímeros/química , Animais , Materiais Biocompatíveis/química , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
18.
Mater Sci Eng C Mater Biol Appl ; 68: 746-757, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524076

RESUMO

Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.


Assuntos
Durapatita , Teste de Materiais , Nanotubos de Carbono/química , Animais , Linhagem Celular , Durapatita/síntese química , Durapatita/química , Durapatita/farmacologia , Temperatura Alta , Camundongos , Nanotubos de Carbono/ultraestrutura
19.
Colloids Surf B Biointerfaces ; 148: 629-639, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694053

RESUMO

In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17ß-hydroxy-17α-picolyl-androst-5-en-3ß-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.


Assuntos
Androstanos/química , Antineoplásicos/química , Quitosana/química , Durapatita/química , Ácido Láctico/química , Ácido Poliglicólico/química , Células A549 , Androstanos/farmacocinética , Androstanos/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica , Microscopia Confocal , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
20.
J Biomed Mater Res B Appl Biomater ; 71(2): 284-94, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15386398

RESUMO

Hydroxyapatite/poly-L-lactide (HAp/PLLA) is a ceramic/polymer composite, whose application as a resorbable biomaterial for the substitution and repair of hard bone tissue is widely promising in orthopedic, oral, maxillofacial, and reconstructive surgery. Hot processing is a necessary step for obtaining HAp/PLLA composite blocks with mechanical properties similar to those of bones. In this article, the changes in structure and physicochemical properties of HAp/PLLA composite, hot pressed for different pressing times (5, 15, 30, 45, and 60 min), were studied. Because the morphology of HAp/PLLA composite biomaterial is very sensitive to this procedure, its surface microstructure was analyzed by scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX) detector system. Structural changes occurring in the material, mostly changes in crystallinity of PLLA, were studied by wide-angle X-ray structural analyses (WAXS) and infrared (FTIR) spectroscopy. Using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC), the influence of hot pressing on the properties, crystallization kinetics, and decomposition of HAp/PLLA composite biomaterial was analyzed.


Assuntos
Materiais Biocompatíveis , Durapatita , Poliésteres , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Elasticidade , Teste de Materiais , Microscopia Eletrônica de Varredura , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA