RESUMO
Cestodes of the family Anoplocephalidae parasitize a wide range of usually herbivorous hosts including e.g. rodents, ungulates, primates, elephants and hyraxes. While in some hosts, the epidemiology of the infection is well studied, information is lacking in others. In this study of mountain gorillas in the Virunga Massif, an extensive sample set comprising adult cestodes collected via necropsies, proglottids shed in feces, and finally, fecal samples from both night nests and identified individuals were analysed. Anoplocephala gorillae was the dominant cestode species detected in night nest samples and individually known gorillas, of which only 1 individual hosted a Bertiella sp. It was shown that the 2 species can be distinguished through microscopy based on egg morphology and polymerase chain reaction (PCR) assays for diagnostics of both species were provided. Sequences of mitochondrial (cox 1) and nuclear (ITS1, 18S rDNA, 28S rDNA) markers were used to evaluate the phylogenetic position of the 2 cestodes detected in mountain gorillas. Both types of fecal samples, from night nests and from identified individuals, provided comparable information about the prevalence of anoplocephalid cestodes, although the analysis of samples collected from identified gorilla individuals showed significant intra-individual fluctuation of A. gorillae egg shedding within a short period. Therefore, multiple samples should be examined to obtain reliable data for wildlife health management programmes, especially when application of anthelmintic treatment is considered. However, while A. gorillae is apparently a common symbiont of mountain gorillas, it does not seem to impair the health of its host.
Assuntos
Cestoides , Gorilla gorilla , Animais , Ruanda/epidemiologia , Parques Recreativos , Filogenia , Cestoides/genética , DNA RibossômicoAssuntos
Altitude , COVID-19/prevenção & controle , COVID-19/veterinária , Espécies em Perigo de Extinção/estatística & dados numéricos , Gorilla gorilla/virologia , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/prevenção & controle , Animais , COVID-19/diagnóstico , COVID-19/transmissão , Humanos , Máscaras , Distanciamento Físico , Ruanda , Turismo , Zoonoses Virais/diagnósticoRESUMO
Poaching is a pervasive threat to wildlife, yet quantifying the direct effect of poaching on wildlife is rarely possible because both wildlife and threat data are infrequently collected concurrently. In this study, we used poaching data collected through the Management Information System (MIST) and wildlife camera trap data collected by the Tropical Ecology Assessment and Monitoring (TEAM) network from 2014 to 2017 in Volcanoes National Park, Rwanda. We implemented co-occurrence multi-season occupancy models that accounted for imperfect detection to investigate the effect of poaching on initial occupancy, colonization, and extinction of five mammal species. Specifically, we focused on two species of conservation concern (mountain gorilla [Gorilla beringei beringei] and golden monkey [Cercopithecus mitis kandti]), and three species targeted by poachers (black-fronted duiker [Cephalophus nigrifrons], bushbuck [Tragelaphus scriptus], and African buffalo [Syncerus caffer]). We found that the probability of local extinction was highest in sites with poaching activity for golden monkey and bushbuck. In addition, the probability of initial occupancy for golden monkey was highest in sites without poaching activity. We only found weak evidence of effects of poaching on parameters governing the occupancy dynamics of the other species. All species showed evidence of poaching presence affecting the probability of detection of the wildlife species. This is the first study to our knowledge to combine direct threat observations from ranger-based monitoring data with camera trap wildlife observations to quantify the effect of poaching on wildlife. Given the widespread collection of ranger-based monitoring and camera trap data, our approach is broadly applicable to numerous protected areas and has the potential to significantly improve conservation management. Specifically, the relationship between poaching activity and wildlife population dynamics can be combined with information on the relationship between ranger patrols and poaching activity to develop models useful for making wise decisions about ranger patrol deployment.
Assuntos
Animais Selvagens , Gorilla gorilla , Agricultura , Animais , Conservação dos Recursos Naturais , Mamíferos , Parques RecreativosRESUMO
Conservation efforts have led to the recovery of the endangered mountain gorilla populations. Due to their limited potential for spatial expansion, population densities increased, which may alter the epidemiology of infectious diseases. Recently, clinical gastrointestinal illnesses linked to helminth infections have been recorded in both gorilla populations. To understand drivers and patterns of helminth infections we quantified strongylid and tapeworm infections across both Virunga Massif and Bwindi populations using fecal egg counts. We assessed the impact of age, sex, group size, season and spatial differences used as a proxy, which reflects observed variation in the occurrence of gastrointestinal problems, vegetation types, gorilla subpopulation growth and associated social structure on helminth infections. We revealed striking geographic differences in strongylid infections with higher egg counts mostly in areas with high occurrences of gastrointestinal disease. Increased helminth egg counts were also associated with decreasing group size in some areas. Observed spatial differences may reflect mutual effects of variations in subpopulation growth rates, gorilla social structure, and vegetation associated with altitude across mountain gorilla habitat. Helminth infection intensities in Virunga gorillas were lowest in the youngest and the oldest animals. Elucidating parasite infection patterns of endangered species with low genetic diversity is crucial for their conservation management.
Assuntos
Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/parasitologia , Variação Biológica da População , Helmintíase Animal/epidemiologia , Helmintíase Animal/parasitologia , Animais , Doenças dos Símios Antropoides/diagnóstico , California/epidemiologia , Feminino , Masculino , Parques RecreativosRESUMO
When mothers continue to support their offspring beyond infancy, they can influence the fitness of those offspring, the strength of social relationships within their groups, and the life-history traits of their species. Using up to 30 years of demographic data from 58 groups of gorillas in two study sites, this study extends such findings by showing that mothers may also contribute to differences in social organization between closely related species. Female mountain gorillas remained with their sons for significantly longer than western gorillas, which may explain why male philopatry and multimale groups are more common among mountain gorillas. The presence of the putative father and other familiar males did not vary significantly between species, and we found only limited support for the socio-ecological theory that the distribution of adult males is influenced by the distribution of females. Within each gorilla species, variations in those distributions may also reflect the different stages in the typical life cycle of a group. Collectively, our results highlight the potentially far-reaching consequences of maternal support that extends beyond infancy, and they illustrate the opportunity to incorporate additional factors into phylogenetic analyses of variations in social organization, including studies of human evolution.
RESUMO
Using 30 years of demographic data from 15 groups, this study estimates how harem size, female fertility, and offspring survival may contribute to variance in the siring rates of dominant male mountain gorillas throughout the Virunga Volcano Region. As predicted for polygynous species, differences in harem size were the greatest source of variance in the siring rate, whereas differences in female fertility and offspring survival were relatively minor. Harem size was positively correlated with offspring survival, even after removing all known and suspected cases of infanticide, so the correlation does not seem to reflect differences in the ability of males to protect their offspring. Harem size was not significantly correlated with female fertility, which is consistent with the hypothesis that mountain gorillas have minimal feeding competition. Harem size, offspring survival, and siring rates were not significantly correlated with the proportion of dominant tenures that occurred in multimale groups versus one-male groups; even though infanticide is less likely when those tenures end in multimale groups than one-male groups. In contrast with the relatively small contribution of offspring survival to variance in the siring rates of this study, offspring survival is a major source of variance in the male reproductive success of western gorillas, which have greater predation risks and significantly higher rates of infanticide. If differences in offspring protection are less important among male mountain gorillas than western gorillas, then the relative importance of other factors may be greater for mountain gorillas. Thus, our study illustrates how variance in male reproductive success and its components can differ between closely related species.
Assuntos
Gorilla gorilla/fisiologia , Reprodução , Animais , Ecossistema , Feminino , Gorilla gorilla/classificação , MasculinoRESUMO
Infanticide can be a major influence upon the social structure of species in which females maintain long-term associations with males. Previous studies have suggested that female mountain gorillas benefit from residing in multimale groups because infanticide occurs when one-male groups disintegrate after the dominant male dies. Here we measure the impact of infanticide on the reproductive success of female mountain gorillas, and we examine whether their dispersal patterns reflect a strategy to avoid infanticide. Using more than 40 years of data from up to 70% of the entire population, we found that only 1.7% of the infants that were born in the study had died from infanticide during group disintegrations. The rarity of such infanticide mainly reflects a low mortality rate of dominant males in one-male groups, and it does not dispel previous observations that infanticide occurs during group disintegrations. After including infanticide from causes other than group disintegrations, infanticide victims represented up to 5.5% of the offspring born during the study, and they accounted for up to 21% of infant mortality. The overall rates of infanticide were 2-3 times higher in one-male groups than multimale groups, but those differences were not statistically significant. Infant mortality, the length of interbirth intervals, and the age of first reproduction were not significantly different between one-male versus multimale groups, so we found no significant fitness benefits for females to prefer multimale groups. In addition, we found limited evidence that female dispersal patterns reflect a preference for multimale groups. If the strength of selection is modest for females to avoid group disintegrations, than any preference for multimale groups may be slow to evolve. Alternatively, variability in male strength might give some one-male groups a lower infanticide risk than some multimale groups, which could explain why both types of groups remain common.
Assuntos
Comportamento Animal , Gorilla gorilla/psicologia , Reprodução/fisiologia , Comportamento Social , Distribuição Animal , Animais , Animais Recém-Nascidos , Evolução Biológica , Meio Ambiente , Feminino , Gorilla gorilla/fisiologia , Masculino , Dinâmica Populacional , Fatores SexuaisRESUMO
As wildlife populations are declining, conservationists are under increasing pressure to measure the effectiveness of different management strategies. Conventional conservation measures such as law enforcement and community development projects are typically designed to minimize negative human influences upon a species and its ecosystem. In contrast, we define "extreme" conservation as efforts targeted to deliberately increase positive human influences, including veterinary care and close monitoring of individual animals. Here we compare the impact of both conservation approaches upon the population growth rate of the critically endangered Virunga mountain gorillas (Gorilla beringei beringei), which increased by 50% since their nadir in 1981, from approximately 250 to nearly 400 gorillas. Using demographic data from 1967-2008, we show an annual decline of 0.7%±0.059% for unhabituated gorillas that received intensive levels of conventional conservation approaches, versus an increase 4.1%±0.088% for habituated gorillas that also received extreme conservation measures. Each group of habituated gorillas is now continuously guarded by a separate team of field staff during daylight hours and receives veterinary treatment for snares, respiratory disease, and other life-threatening conditions. These results suggest that conventional conservation efforts prevented a severe decline of the overall population, but additional extreme measures were needed to achieve positive growth. Demographic stochasticity and socioecological factors had minimal impact on variability in the growth rates. Veterinary interventions could account for up to 40% of the difference in growth rates between habituated versus unhabituated gorillas, with the remaining difference likely arising from greater protection against poachers. Thus, by increasing protection and facilitating veterinary treatment, the daily monitoring of each habituated group contributed to most of the difference in growth rates. Our results argue for wider consideration of extreme measures and offer a startling view of the enormous resources that may be needed to conserve some endangered species.