Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3486-3498, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718188

RESUMO

Enzyme immobilization is a crucial technique for improving the stability of enzymes. Compared with free enzymes, immobilized enzymes offer several advantages in industrial applications. Efficient enzyme immobilization requires a technique that integrates the advantages of physical absorption and covalent binding while addressing the limitations of conventional support materials. This study offers a practical approach for immobilizing α-amylase on a hierarchically porous chitosan (CS) monolith. An optimized CS monolith was fabricated using chemically modified chitin by thermally induced phase separation. By combining physical adsorption and covalent bonding, this technique leverages the amino and hydroxy groups present in CS to facilitate effective enzyme binding and stability. α-Amylase immobilized on the CS monolith demonstrated excellent stability, reusability, and increased activity compared to its soluble counterpart across various pH levels and temperatures. In addition, the CS monolith exhibited a significant potential to immobilize other enzymes, namely, lipase and catalase. Immobilized lipase and catalase exhibited higher loading capacities and enhanced activities than their soluble forms. This versatility highlights the broad applicability of CS monoliths as support materials for various enzymatic processes. This study provides guidelines for fabricating hierarchical porous monolith structures that can provide efficient enzyme utilization in flow systems and potentially enhance the cost-effectiveness of enzymes in industrial applications.


Assuntos
Quitosana , Enzimas Imobilizadas , Lipase , Enzimas Imobilizadas/química , Quitosana/química , Porosidade , Lipase/química , Lipase/metabolismo , Estabilidade Enzimática , Catalase/química , alfa-Amilases/química , Adsorção , Concentração de Íons de Hidrogênio , Temperatura
2.
Environ Res ; 252(Pt 2): 118927, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631467

RESUMO

Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.


Assuntos
Antibacterianos , Cefixima , Argila , Cefixima/química , Antibacterianos/química , Argila/química , Portadores de Fármacos/química , Silicatos de Alumínio/química , Nanopartículas/química , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propilaminas
3.
J Hazard Mater ; 474: 134819, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850940

RESUMO

Developing superior-performance marine-biodegradable plastics remains a critical challenge in mitigating marine plastic pollution. Commercially available biodegradable polymers, such as poly(L-lactide) (PLA), undergo slow degradation in complex marine environments. This study introduces an innovative bioplastic design that employs a facile ring-opening and coupling reaction to incorporate hydrophilic polyethylene glycol (PEG) into PLA, yielding PEG-PLA copolymers with either sequence-controlled alternating or random structures. These materials exhibit exceptional toughness in both wet and dry states, with an elongation at break of 1446.8% in the wet state. Specifically, PEG4kPLA2k copolymer biodegraded rapidly in proteinase K enzymatic solutions and had a significant weight loss of 71.5% after 28 d in seawater. The degradation primarily affects the PLA segments within the PEG-PLA copolymer, as evidenced by structural changes confirmed through comprehensive characterization techniques. The seawater biodegradability, in line with the Organization for Economic Cooperation and Development 306 Marine biodegradation test guideline, reached 72.63%, verified by quantitative biochemical oxygen demand analysis, demonstrating rapid chain scission in marine environments. The capacity of PEG-PLA bioplastic to withstand DI water and rapidly biodegrade in seawater makes it a promising candidate for preventing marine plastic pollution.


Assuntos
Biodegradação Ambiental , Poliésteres , Polietilenoglicóis , Água do Mar , Água do Mar/microbiologia , Poliésteres/química , Poliésteres/metabolismo , Polietilenoglicóis/química , Plásticos Biodegradáveis/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
4.
Int J Biol Macromol ; 273(Pt 2): 133204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889831

RESUMO

Herein, the novel eco-friendly biopolymer electrolytes consisting of banana powder and konjac glucomannan host matrix doped with zinc acetate salt were successfully fabricated through simple casting technique. The biopolymer electrolyte exhibited satisfactory thermal stability and mechanical properties; tensile strength (13.82 MPa); elongation at break (60.52 %) and Young's modulus (93.2 MPa). The electrochemical studies were carried out in symmetrical cells Zn/Zn cells. Biopolymer electrolyte showed favorable ionic conductivity of 5.59 × 10-4 S/cm along with stable cycling performance. The potential stability was found to be 2.52 V. The as-prepared biopolymer electrolytes demonstrated the potential as green, simple yet effective biopolymer electrolytes for zinc-ion batteries.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Mananas , Musa , Pós , Zinco , Mananas/química , Musa/química , Eletrólitos/química , Zinco/química , Biopolímeros/química , Íons/química , Condutividade Elétrica , Resistência à Tração
5.
Int J Biol Macromol ; 271(Pt 1): 132610, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788876

RESUMO

The flammability of bio-derived poly(L-lactic acid) (PLA) greatly limits its application and eco-friendly multifunctional fire-fighting PLA-based composites are highly desired. In this work, a fully bio-based modified CS (C-CS) and commercially available eco-friendly ammonium polyphosphate (APP) were used as a synergistic flame retardant agent (C-CS/APP) to investigate its effects on fire-proofing performance and diverse properties of the PLA. The PLA/5%C-CS/5%APP composite exhibited excellent fire-resistant performance with anti-droplet, smoke-suppression and self-extinguishing property, and its limited oxygen index enhanced by 37 % (compared with neat PLA). This composite reached the highest V-0 fire safety rating, and its peak of heat release rate and total smoke production reduced by 26.5 % and 68.3 %, respectively. In addition, the char residue yield after the cone calorimeter test increased by 46 times in the composite, indicating an outstanding char-forming capacity. The condensed phase flame retardancy played a crucial role on the fire-fighting of this composite, that is, significantly enhanced char residue (as a physical barrier) blocked the heat exchange and O2 entry, and further suppressed the combustion reaction. Additionally, the PLA-based composite showed outstanding UV-absorption property, good anti-bacterial effect, and increased hydrophilicity and crystallizability.


Assuntos
Incêndios , Retardadores de Chama , Poliésteres , Fumaça , Poliésteres/química , Polifosfatos/química , Polifosfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA