Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e11011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343569

RESUMO

Wetlands belong to the globally most threatened habitats, and organisms depending on them are of conservation concern. Wetland destruction and quality loss may affect negatively also boreal breeding ducks in which habitat selection often needs balancing between important determinants of habitat suitability. In Finland duck population trajectories are habitat-specific, while the reasons behind are poorly understood. In this research, we studied the balance of nest predation risk and invertebrate food abundance in boreal breeding ducks in Finland at 45 lakes and ponds in 2017 and 2018. We surveyed duck pairs and broods from these and 18 additional water bodies. We evaluated nest predation by monitoring artificial nests with camera traps over a 7-day exposure period and sampled invertebrates from water bodies using emergence and activity traps. Camera trap results indicate that predation risk was higher in the water bodies surrounded by agricultural land than in forestland. Ponds (seasonal, beaver, and man-made) had lower nest predation risk, and they were also more invertebrate-rich than permanent lakes. In addition, artificial nests further away from water bodies had higher survival than shoreline nests. Habitat use of duck pairs was not associated with invertebrate food, but duck broods preferred habitats rich in food. High nest predation pressure in shorelines of especially agricultural landscapes may contribute to the declining population trends of ducks in Finland. Controlling predators could be an important conservation action to improve duck breeding success. This research underlines the benefits of the availability of different water body types for breeding ducks. There is an urgent need to pay attention to protecting seasonal ponds, while the lack of flooded waters may be mitigated by favouring beavers or creating man-made ponds.

2.
Ecol Evol ; 14(3): e11136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469038

RESUMO

Wetland habitats are changing under multiple anthropogenic pressures. Nutrient leakage and pollution modify physico-chemical state of wetlands and affect the ecosystem through bottom-up processes, while alien predators affect the ecosystems in a top-down manner. Boreal wetlands are important breeding areas for several waterbird species, the abundances of which potentially reflect both bottom-up and top-down ecosystem processes. Here, we use long-term national monitoring data gathered from c. 130 waterbird breeding sites in Finland from the 1980s to the 2020s. We hypothesised that the physico-chemical state of the waters and increasing alien predator abundance both play a role in steering the waterbird population trends. We set out to test this hypothesis by relating population changes of 17 waterbird species to changes in water chemistry and to regional alien predator indices while allowing species-specific effects to vary with foraging niche (dabblers, invertivore divers, piscivorous divers, herbivores), nesting site, female mass and habitat (oligotrophic, eutrophic). We found niche and nesting site-specific, habitat-dependent changes in waterbird numbers. While the associations with higher phosphorus levels and browning water were in overall positive at the oligotrophic lakes, the numbers of invertivore and piscivore diving ducks were most strongly negatively associated with higher phosphorus levels and browning water at the eutrophic lakes. Furthermore, increased pH levels benefitted piscivores. Invertivore diving duck species nesting on the wetlands had declined most on sites with high alien predator indices. Large herbivorous species and species preferring oligotrophic lakes seem to be successful. We conclude that the large-scale breeding waterbird decline in Finland is closely connected to both bottom-up and top-down processes, where negative associations are emphasised especially at eutrophic lakes. Niche-, nest site- and habitat-specific management actions are required to conserve declining waterbird populations. Managing wetlands on catchments level together with alien predator control may provide important approaches to future wetland management.

3.
J Clin Microbiol ; 50(11): 3664-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972821

RESUMO

Newcastle disease (ND) is a highly contagious, severe disease of poultry caused by pathogenic strains of Newcastle disease virus (NDV; or avian paramyxovirus-1). NDV is endemic in wild birds worldwide and one of the economically most important poultry pathogens. Most of the published strains are outbreak-associated strains, while the apathogenic NDV strains that occur in wild birds, posing a constant threat to poultry with their capability to convert into more virulent forms, have remained less studied. We screened for NDV RNA in cloacal and oropharyngeal samples from wild waterfowl in Finland during the years 2006 to 2010: 39 of 715 birds were positive (prevalence, 5.5%). The partial or full-length F genes of 37 strains were sequenced for phylogenetic purposes. We also characterized viruses derived from three NDV outbreaks in Finland and discuss the relationships between these outbreak-associated and the wild-bird-associated strains. We found that all waterfowl NDV isolates were lentogenic strains of class I or class II genotype I. We also isolated a genetically distinct class I strain (teal/Finland/13111/2008) grouping phylogenetically together with only strain HIECK87191, isolated in Northern Ireland in 1987. Together they seem to form a novel class I genotype genetically differing from other known NDVs by at least 12%.


Assuntos
Surtos de Doenças , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Animais , Aves , Cloaca/virologia , Análise por Conglomerados , Finlândia/epidemiologia , Genótipo , Epidemiologia Molecular , Dados de Sequência Molecular , Vírus da Doença de Newcastle/isolamento & purificação , Orofaringe/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
4.
Ecol Evol ; 6(19): 7004-7014, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725377

RESUMO

Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.

5.
Vet Microbiol ; 172(3-4): 548-54, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25042528

RESUMO

Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years.


Assuntos
Aves/virologia , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/virologia , Epidemiologia Molecular , Animais , Surtos de Doenças/veterinária , Finlândia/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA