Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 35(3): e4647, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766380

RESUMO

Glioblastoma is a highly infiltrative neoplasm with a high propensity of recurrence. The location of recurrence usually cannot be anticipated and depends on various factors, including the surgical resection margins. Currently, radiation planning utilizes the hyperintense signal from T2-FLAIR MRI and is delivered to a limited area defined by standardized guidelines. To this end, noninvasive early prediction and delineation of recurrence can aid in tailored targeted therapy, which may potentially delay the relapse, consequently improving overall survival. In this work, we hypothesize that radiomics-based phenotypic quantifiers may support the detection of recurrence before it is visualized on multimodal MRI. We employ retrospective longitudinal data from 29 subjects with a varying number of time points (three to 13) that includes glioblastoma recurrence. Voxelwise textural and intensity features are computed from multimodal MRI (T1-contrast enhanced [T1CE], FLAIR, and apparent diffusion coefficient), primarily to gain insights into longitudinal radiomic changes from preoperative MRI to recurrence and subsequently to predict the region of relapse from 143 ± 42 days before recurrence using machine learning. T1CE MRI first-order and gray-level co-occurrence matrix features are crucial in detecting local recurrence, while multimodal gray-level difference matrix and first-order features are highly predictive of the distant relapse, with a voxelwise test accuracy of 80.1% for distant recurrence and 71.4% for local recurrence. In summary, our work exemplifies a step forward in predicting glioblastoma recurrence using radiomics-based phenotypic changes that may potentially serve as MR-based biomarkers for customized therapeutic intervention.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
2.
Front Neurosci ; 15: 741489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35280342

RESUMO

Background: A multimodal connectomic analysis using diffusion and functional MRI can provide complementary information on the structure-function network dynamics involved in complex neurodegenerative network disorders such as Parkinson's disease (PD). Deep learning-based graph neural network models generate higher-level embeddings that could capture intricate structural and functional regional interactions related to PD. Objective: This study aimed at investigating the role of structure-function connections in predicting PD, by employing an end-to-end graph attention network (GAT) on multimodal brain connectomes along with an interpretability framework. Methods: The proposed GAT model was implemented to generate node embeddings from the structural connectivity matrix and multimodal feature set containing morphological features and structural and functional network features of PD patients and healthy controls. Graph classification was performed by extracting topmost node embeddings, and the interpretability framework was implemented using saliency analysis and attention maps. Moreover, we also compared our model with unimodal models as well as other state-of-the-art models. Results: Our proposed GAT model with a multimodal feature set demonstrated superior classification performance over a unimodal feature set. Our model demonstrated superior classification performance over other comparative models, with 10-fold CV accuracy and an F1 score of 86% and a moderate test accuracy of 73%. The interpretability framework highlighted the structural and functional topological influence of motor network and cortico-subcortical brain regions, among which structural features were correlated with onset of PD. The attention maps showed dependency between large-scale brain regions based on their structural and functional characteristics. Conclusion: Multimodal brain connectomic markers and GAT architecture can facilitate robust prediction of PD pathology and provide an attention mechanism-based interpretability framework that can highlight the pathology-specific relation between brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA