Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373058

RESUMO

COPD, one of world's leading contributors to morbidity and mortality, is characterized by airflow limitation and heterogeneous clinical features. Three main phenotypes are proposed: overlapping asthma/COPD (ACO), exacerbator, and emphysema. Disease severity can be classified as mild, moderate, severe, and very severe. The molecular basis of inflammatory amplification, cellular aging, and immune response are critical to COPD pathogenesis. Our aim was to investigate EP300 (histone acetylase, HAT), HDAC 2 (histone deacetylase), HDAC3, and HDAC4 gene expression, telomere length, and differentiation ability to M1/M2 macrophages. For this investigation, 105 COPD patients, 42 smokers, and 73 non-smoker controls were evaluated. We identified a reduced HDAC2 expression in patients with mild, moderate, and severe severity; a reduced HDAC3 expression in patients with moderate and severe severity; an increased HDAC4 expression in patients with mild severity; and a reduced EP300 expression in patients with severe severity. Additionally, HDAC2 expression was reduced in patients with emphysema and exacerbator, along with a reduced HDAC3 expression in patients with emphysema. Surprisingly, smokers and all COPD patients showed telomere shortening. COPD patients showed a higher tendency toward M2 markers. Our data implicate genetic changes in COPD phenotypes and severity, in addition to M2 prevalence, that might influence future treatments and personalized therapies.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Macrófagos , Senescência Celular/genética , Expressão Gênica
2.
Am J Respir Cell Mol Biol ; 66(5): 484-496, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35148253

RESUMO

Pulmonary fibrosis (PF) is an abnormal remodeling of cellular composition and extracellular matrix that results in histological and functional alterations in the lungs. Apoptosis signal-regulating kinase-1 (ASK1) is a member of the mitogen-activated protein (MAP) kinase family that is activated by oxidative stress and promotes inflammation and apoptosis. Here we show that bleomycin-induced PF is reduced in Ask1 knockout mice (Ask1-/-) compared with wild-type (WT) mice, with improved survival and histological and functional parameters restored to basal levels. In WT mice, bleomycin caused activation of ASK1, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2) in lung tissue, as well as changes in redox indicators (thioredoxin and heme-oxygenase-1), collagen content, and epithelial-mesenchymal transition markers (EMTs). These changes were largely restored toward untreated WT control levels in bleomycin-treated Ask1-/- mice. We further investigated whether treatment of WT mice with an ASK1 inhibitor, selonsertib (GS-4997), during the fibrotic phase would attenuate the development of PF. We found that pharmacological inhibition of ASK1 reduced activation of ASK1, p38, and ERK1/2 and promoted the restoration of redox and EMT indicators, as well as improvements in histological parameters. Our results suggest that ASK1 plays a central role in the development of bleomycin-induced PF in mice via p38 and ERK1/2 signaling. Together, these data indicate a possible therapeutic target for PF that involves an ASK1/p38/ERK1/2 axis.


Assuntos
Bleomicina , Fibrose Pulmonar , Animais , Apoptose/fisiologia , Bleomicina/efeitos adversos , MAP Quinase Quinase Quinase 5 , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno , Fibrose Pulmonar/induzido quimicamente , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Phytother Res ; 36(2): 1032-1042, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028976

RESUMO

Obesity is a chronic condition involving inflammation and oxidative stress that commonly predisposes affected individuals to develop metabolic disorders. We hypothesize that Ilex paraguariensis (IP) can modulate oxidative stress and inflammation underpinning metabolic disorders caused by obesity. C57BL/6 mice were fed a high-fat diet (HFD group) for 12 weeks. Concomitantly, some mice were treated with roasted IP (15 mg/ml - HFD + IP) or dimethyl fumarate (DMF) as a positive control (2 mg/ml - HFD + DMF). The control group received standard chow and water ad libitum. Histological analyses of fat tissue and liver, and quantification of mediators related to oxidative stress (Kelch-like ECH-associated protein 1/NF-E2-related factor 2, NADP(H) quinone oxidoreductase-1 [NQO1], heme oxygenase 1 [HO1], and superoxide dismutase) as well as metabolic profile blood biomarkers (glucose, leptin, resistin, high-density lipoproteins [HDLs], and triglycerides) were performed. Metabolic disorders were prevented in mice treated with IP, as evidenced by the observation that glucose, HDL, and resistin levels were similar to those assessed in the control group. Morphological analyses showed that both IP and DMF treatments prevented hepatic steatosis and adipocyte hypertrophy in visceral adipose tissue. Finally, although the antioxidant response stimulated by IP was quite limited, significant effects were found on NQO1 and HO1 expression. In conclusion, IP has promising preventative effects on the development of metabolic disorders caused by obesity.


Assuntos
Ilex paraguariensis , Doenças Metabólicas , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado , Doenças Metabólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
4.
Pulm Pharmacol Ther ; 69: 102053, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214692

RESUMO

INTRODUCTION: Cigarette smoke (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and pulmonary emphysema. The use of antioxidants has emerged as a potential therapeutic strategy to treat airway inflammation and lung diseases. In the current study, we investigated the potential therapeutic impact of diallyl disulfide (Dads) treatment in a murine model of CS-induced emphysema. METHODS: C57BL/6 mice were exposed to CS for 60 consecutive days and treated with vehicle or Dads (30, 60 or 90 mg/kg) by oral gavage for the last 30 days, three times/week. The control group was sham-smoked and received vehicle treatment. All mice were euthanized 24 h after day 60; bronchoalveolar lavage (BAL) was performed and lungs were processed for further experimentation. Histological (HE stained sections, assessment of mean linear intercept (Lm)), biochemical (nitrite, superoxide dismutase (SOD), glutathione transferase (GST), and malondialdehyde (MDA) equivalents), and molecular biology (metalloproteinase (MMP) 12, SOD2, carbonyl reductase 1 (CBR1), nitrotyrosine (PNK), 4-hydroxynonenal (4-HNE), and CYP2E1) analyses were performed. RESULTS: Treatment with Dads dose-dependently reduced CS-induced leukocyte infiltration into the airways (based on BAL fluid counts) and improved lung histology (indicated by a reduction of Lm). Furthermore, CS exposure dramatically reduced the activity of the antioxidant enzymes SOD and GST in lung tissue and increased nitrite and MDA levels in BAL; these effects were all effectively counteracted by Dads treatment. Western blot analysis further confirmed the antioxidant potential of Dads, showing that treatment prevented the CS-induced decrease in SOD2 expression and increase in lung damage markers, such as CBR1, PNK, and 4-HNE. Furthermore, increased MMP12 (an important hallmark of CS-induced emphysema) and CYP2E1 lung protein levels were significantly reduced in mice receiving Dads treatment. CONCLUSION: Our findings demonstrate that treatment with Dads is effective in preventing multiple pathological features of CS-induced emphysema in an in vivo mouse model. In addition, we have identified several proteins/enzymes, including 4-HNE, CBR1, and CYP2E1, that are modifiable by Dads and could represent specific therapeutic targets for the treatment of COPD and emphysema.


Assuntos
Enfisema , Enfisema Pulmonar , Compostos Alílicos , Animais , Líquido da Lavagem Broncoalveolar , Dissulfetos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/prevenção & controle , Fumaça/efeitos adversos , Fumar
5.
J Surg Res ; 262: 212-223, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610056

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion (I/R) injury constitutes a severe disorder, in great part resulting from oxidative stress. Because sulforaphane and albumin were shown to increase antioxidant defenses, we evaluated the therapeutic potential of these agents in an experimental model of I/R injury. METHODS: Wistar rats were used to establish a model of intestinal I/R (35 min of ischemia, followed by 45 min of reperfusion) and were treated with albumin (5 mL/kg), sulforaphane (500 µg/kg), or saline intravenously before reperfusion. Animals that were not subjected to I/R served as the sham (laparotomy only) and control groups. Blood samples were analyzed for arterial gas, reactive oxygen species, and reactive nitrogen species using different molecular fluorescent probes. After euthanasia, ileal samples were collected for analysis, including histopathology, immunohistochemistry, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assays, and lactic dehydrogenase measurement. RESULTS: Oxygenation status and hemodynamic parameters were uniform during the experiment. The sulforaphane- or albumin-treated groups showed reduced concentrations of reactive oxygen species (P < 0.04), nitric oxide (P < 0.001), and peroxynitrite (P = 0.001), compared with I/R injury untreated animals. Treatment with sulforaphane or albumin resulted in the preservation of goblet cells (P < 0.03), reductions in histopathologic scores (P < 0.01), macrophage density (P < 0.01), iNOS expression (P < 0.004), NF-kappa B activation (P < 0.05), and apoptotic rates (P < 0.04) in the mucosa and a reduction in the concentration of lactic dehydrogenase (P < 0.04), more pronounced with sulforaphane. CONCLUSIONS: Attenuation of intestinal I/R injury in this model probably reflects the antioxidative effects of systemic administration of both sulforaphane and albumin and reinforces their use in future translational research.


Assuntos
Albuminas/uso terapêutico , Antioxidantes/uso terapêutico , Intestinos/irrigação sanguínea , Isotiocianatos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Sulfóxidos/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , NF-kappa B/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
6.
Biochem Soc Trans ; 48(3): 799-811, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32597478

RESUMO

Air pollution is a major environmental threat and each year about 7 million people reported to die as a result of air pollution. Consequently, exposure to air pollution is linked to increased morbidity and mortality world-wide. Diesel automotive engines are a major source of urban air pollution in the western societies encompassing particulate matter and diesel exhaust particles (DEP). Air pollution is envisioned as primary cause for cardiovascular dysfunction, such as ischemic heart disease, cardiac dysrhythmias, heart failure, cerebrovascular disease and stroke. Air pollution also causes lung dysfunction, such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and specifically exacerbations of these diseases. DEP induces inflammation and reactive oxygen species production ultimately leading to mitochondrial dysfunction. DEP impair structural cell function and initiate the epithelial-to-mesenchymal transition, a process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue repair and eventually leading to fibrosis. Targeting cyclic adenosine monophosphate (cAMP) has been implicated to alleviate cardiopulmonary dysfunction, even more intriguingly cAMP seems to emerge as a potent regulator of mitochondrial metabolism. We propose that targeting of the mitochondrial cAMP nanodomain bear the therapeutic potential to diminish air pollutant - particularly DEP - induced decline in cardiopulmonary function.


Assuntos
Poluentes Atmosféricos/toxicidade , Cardiopatias/induzido quimicamente , Pneumopatias/induzido quimicamente , Nanotecnologia , Humanos , Mitocôndrias/efeitos dos fármacos
7.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352854

RESUMO

Air pollution is mainly caused by burning of fossil fuels, such as diesel, and is associated with increased morbidity and mortality due to adverse health effects induced by inflammation and oxidative stress. Dimethyl fumarate (DMF) is a fumaric acid ester and acts as an antioxidant and anti-inflammatory agent. We investigated the potential therapeutic effects of DMF on pulmonary damage caused by chronic exposure to diesel exhaust particles (DEPs). Mice were challenged with DEPs (30 µg per mice) by intranasal instillation for 60 consecutive days. After the first 30 days, the animals were treated daily with 30 mg/kg of DMF by gavage for the remainder of the experimental period. We demonstrated a reduction in total inflammatory cell number in the bronchoalveolar lavage (BAL) of mice subjected to DEP + DMF as compared to those exposed to DEPs alone. Importantly, DMF treatment was able to reduce lung injury caused by DEP exposure. Intracellular total reactive oxygen species (ROS), peroxynitrite (OONO), and nitric oxide (NO) levels were significantly lower in the DEP + DMF than in the DEP group. In addition, DMF treatment reduced the protein expression of kelch-like ECH-associated protein 1 (Keap-1) in lung lysates from DEP-exposed mice, whereas total nuclear factor κB (NF-κB) p65 expression was decreased below baseline in the DEP + DMF group compared to both the control and DEP groups. Lastly, DMF markedly reduced DEP-induced expression of nitrotyrosine, glutathione peroxidase-1/2 (Gpx-1/2), and catalase in mouse lungs. In summary, DMF treatment effectively reduced lung injury, inflammation, and oxidative and nitrosative stress induced by chronic DEP exposure. Consequently, it may lead to new therapies to diminish lung injury caused by air pollutants.


Assuntos
Fumarato de Dimetilo/farmacologia , Estresse Oxidativo , Pneumonia/etiologia , Pneumonia/metabolismo , Emissões de Veículos , Poluentes Atmosféricos/efeitos adversos , Animais , Biomarcadores , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , NF-kappa B/metabolismo , Oxirredução , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidade
8.
Arch Toxicol ; 92(10): 3077-3091, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30151596

RESUMO

CYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites. Moreover, the Uridine 5'-diphospho-glucuronosyltransferase (UGT) involved in the hepatic glucuronidation of OH-CHZ has not yet been identified. In this study, we used recombinant HepG2 cells expressing CYP2E1, metabolically competent HepaRG cells, primary hepatocytes and precision-cut human liver slices to identify metabolites of CHZ (300 µM) by high pressure liquid chromatography-UV and liquid-chromatography-mass spectrometry analyses. Herein, we report the detection of the CHZ-O-glucuronide (CHZ-O-Glc) derived from OH-CHZ in culture media but also in mouse and human urine and we identified a novel CHZ metabolite, the CHZ-N-glucuronide (CHZ-N-Glc), which is resistant to enzymatic hydrolysis and produced independently of CHZ hydroxylation by CYP2E1. Moreover, we demonstrate that UGT1A1, 1A6 and 1A9 proteins catalyze the synthesis of CHZ-O-Glc while CHZ-N-Glc is produced by UGT1A9 specifically. Together, we demonstrated that hydrolysis of CHZ-O-Glc is required to reliably quantify CYP2E1 activity because of the rapid transformation of OH-CHZ into CHZ-O-Glc and identified the CHZ-N-Glc produced independently of the CYP2E1 activity. Our results also raise the questions of the contribution of CHZ-N-Glc in the overall CHZ metabolism and of the quantification of CHZ glucuronides in vitro and in vivo for measuring UGT1A activities.


Assuntos
Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/metabolismo , Hepatócitos/metabolismo , Animais , Clorzoxazona/análogos & derivados , Clorzoxazona/farmacocinética , Clorzoxazona/urina , Cromatografia Líquida de Alta Pressão , Meios de Cultura/análise , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Hidroxilação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Bioorg Med Chem ; 25(20): 5557-5568, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28886998

RESUMO

Chronic obstructive pulmonary disease (COPD) is an incurable and progressive disease. Emphysema is the principal manifestation of COPD, and the main cause of this condition is cigarette smoke (CS). Natural products have shown antioxidant and anti-inflammatory properties that can prevent acute lung inflammation and emphysema, but there are few reports in the literature regarding therapeutic approaches to emphysema. We hypothesized that supplementation with natural extracts would repair lung damage in emphysema caused by CS exposure. Mice were exposed to 60days of CS and then treated or not with three different natural extracts (mate tea, grape and propolis) orally for additional 60days. Histological analysis revealed significant improvements in lung histoarchitecture, with recovery of alveolar spaces in all groups treated with natural extracts. Propolis was also able to recovery alveolar septa and elastic fibers. Propolis also increased MMP-2 and decreased MMP-12 expression, favoring the process of tissue repair. Additionally, propolis recruited leukocytes, including macrophages, without ROS release. These findings led us to investigate the profile of these macrophages, and we showed that propolis could promote macrophage alternative activation, thus increasing the number of arginase-positive cells and IL-10 levels and favoring an anti-inflammatory microenvironment. We further investigated the participation of Nrf2 in lung repair, but no Nrf2 translocation to the nucleus was observed in lung cells. Proteins and enzymes related to Nrf2 were not altered, other than NQO1, which seemed to be activated by propolis in a Nrf2-independent manner. Finally, propolis downregulated IGF1 expression. In conclusion, propolis promoted lung repair in a mouse emphysema model via macrophage polarization from M1 to M2 in parallel to the downregulation of IGF1 expression in a Nrf2-independent manner.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Própole/farmacologia , Enfisema Pulmonar/tratamento farmacológico , Fumar/tratamento farmacológico , Animais , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fumar/metabolismo
10.
Int J Mol Sci ; 18(9)2017 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-28891938

RESUMO

Alveolar macrophages play a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Monocytes are recruited from blood during inflammation and then mature into alveolar macrophages. The aim of this study was to investigate the effect of cigarette smoke (CS) at different times in lung macrophages and monocytes from blood and bone marrow in mice. Male mice (C57BL/6, n = 45) were divided into groups: control, CS 5 days, CS 14 days and CS 30 days. Five days' CS exposure induced a pronounced influx of neutrophils and macrophages in the lung associated with increased levels of keratinocyte chemoattractant (KC), tumor necrosis factor-α (TNF-α), nitric oxide (NO) and matrix metalloproteinase (MMP)-12. After 14 days of CS exposure, neutrophil recruitment and cytokine production were greatly reduced. Moreover, chronic CS exposure led to increased recruitment of macrophages (with high expression of CD206), transforming growth factor-ß (TGF-ß) production as well as no detection of TNF-α, interleukin (IL)-6 and KC. CS can also change the monocyte phenotype in the blood and bone marrow, with an increase in Ly6Clow cells. These results show for the first time that CS can change not only macrophage polarization but also monocyte. These results suggest that continued recruitment of Ly6Clow monocytes may help the distinct renewing macrophage M2 population required for COPD progression.


Assuntos
Pulmão/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fenótipo , Doença Pulmonar Obstrutiva Crônica/etiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pulmão/patologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Pulm Pharmacol Ther ; 41: 11-18, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27599597

RESUMO

Short-term cigarette smoke (CS) exposure does not cause emphysema; however, some pathogenesis hallmarks are maintained, such as oxidative stress and inflammation. This study aimed to test the efficacy of eucalyptol against short-term CS exposure in mice. C57BL/6 mice were exposed to 12 cigarettes per day for 5 days (CS group). The control group was exposed to sham smoking. Three groups of mice exposed to CS were treated to different concentrations of eucalyptol (1, 3, 10 mg/mL) via inhalation (15 min/daily) for 5 days (CS + 1 mg, CS+3 mg and CS+10 mg groups). CS group and control one were sham treated by using vehicle. The anti-inflammatory and antioxidant effects of eucalyptol were assessed 24 h after the last CS exposure by determining cell counts, measuring cytokine production and performing western blotting, biochemical and histological analyses. Eucalyptol at 3 mg/mL and 10 mg/mL concentrations reduced total leukocyte numbers compared to the CS group (p < 0.001), while macrophage numbers were reduced at all concentrations (p < 0.001). Myeloperoxidase, used as neutrophil marker, was reduced at 3 mg/mL (p < 0.01) and 10 mg/mL (p < 0.05) concentrations. Eucalyptol reduced cytokine levels (IL-1ß, IL-6 and KC) at 3 mg/mL and 10 mg/mL concentrations (p < 0.01) compared to the CS group. The exception was TNF-α, with a reduction only at 10 mg/mL of eucalyptol compared to the CS group (p < 0.001). Additionally, eucalyptol decreased the NF-kappa B p65 subunit at 3 mg/mL and 10 mg/mL compared to the CS group (p < 0.01). Regarding oxidative stress, eucalyptol reduced reactive oxygen species, superoxide dismutase, catalase and malondialdehyde, mainly at 3 mg/mL and 10 mg/mL concentrations compared to the CS group (at least p < 0.05), parallel to reduced glutathione levels at the same concentrations (p < 0.001). Furthermore, treatment with eucalyptol attenuated CS-induced histopathological alterations. Collectively, these results indicate that eucalyptol acts through a mechanism involving decreased oxidative stress, inflammation and the NF-kappa B p65 subunit against CS-induced acute lung inflammation. Thus, eucalyptol may be a potential agent in the treatment of pulmonary inflammation caused by CS in humans.


Assuntos
Cicloexanóis/farmacologia , Monoterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/prevenção & controle , Fumar/efeitos adversos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Cicloexanóis/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eucaliptol , Inflamação/patologia , Inflamação/prevenção & controle , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos/administração & dosagem , Neutrófilos/metabolismo , Peroxidase/metabolismo , Pneumonia/etiologia , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Eur J Nutr ; 55(4): 1455-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26096720

RESUMO

PURPOSE: Protein-restricted diet during pregnancy is related to oxidative stress and, as a consequence, damage to nephrogenesis. We investigated the effects of vinifera grape skin extract (ACH09)-derived polyphenols on preserving renal morphology of maternal protein-restricted 1-day-old offspring. METHODS: Female C57/Bl-6 mice were fed two different isocaloric diets: control diet (19.3 % protein) and low-protein diet (6 % protein) with access to water or to the extract dissolved in drinking water (19.3 % protein plus ACH09 200 mg kg(-1) day(-1) and 6 % protein plus ACH09 200 mg kg(-1) day(-1)) throughout gestation. Renal morphology-glomerular number N[glom]; renal maturity-vascular glomeruli and avascular glomeruli ratio (v-N[glom]/a-N[glom]); medullar and cortical volumes, as well as mean glomerular volume, were analyzed in male offspring. Hepatic superoxide dismutase and catalase (CAT) activities were evaluated, and renal lipid peroxidation levels were measured. RESULTS: Maternal protein restriction affected birth weight and naso-anal length in low-protein offspring compared to control and ACH09 restored both parameters. Protein restriction increased lipid peroxidation in kidney and liver and reduced CAT activity in low-protein group compared to control. Supplementation with ACH09 reduced the kidney oxidative damage and restored the antioxidant activity of CAT. ACH09 prevented glomerular loss and renal immaturity in the offspring. CONCLUSION: The treatment of low-protein-fed dams during pregnancy with ACH09 provides protection from early-life deleterious renal morphological changes. The protective effect of ACH09 may involve antioxidant action and vasodilator effect of the extract.


Assuntos
Dieta com Restrição de Proteínas , Rim/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vitis/química , Animais , Catalase/metabolismo , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Feminino , Rim/metabolismo , Nefropatias/prevenção & controle , Modelos Lineares , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Superóxido Dismutase/metabolismo
13.
Biochim Biophys Acta ; 1840(1): 199-208, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24076233

RESUMO

BACKGROUND: Pulmonary emphysema is characterized by the loss of lung architecture. Our hypothesis is that the inhibition of 5-lipoxygenase (5-LO) production may be an important strategy to reduce inflammation, oxidative stress, and metalloproteinases in lung tissue resulting from cigarette smoke (CS)-induced emphysema. METHODS: 5-LO knockout (129S2-Alox5(tm1Fun)/J) and wild-type (WT) mice (129S2/SvPas) were exposed to CS for 60days. Mice exposed to ambient air were used as Controls. Oxidative, inflammatory, and proteolytic markers were analyzed. RESULTS: The alveolar diameter was decreased in CS 5-LO(-/-) mice when compared with the WT CS group. The CS exposure resulted in less pronounced pulmonary inflammation in the CS 5-LO(-/-) group. The CS 5-LO(-/-) group showed leukotriene B4 values comparable to those of the Control group. The expression of MMP-9 was decreased in the CS 5-LO(-/-) group when compared with the CS WT group. The expression of superoxide dismutase, catalase, and glutathione peroxidase were decreased in the CS 5-LO(-/-) group when compared with the Control group. The protein expression of nuclear factor (erythroid-derived 2)-like 2 was reduced in the CS 5-LO(-/-) group when compared to the CS WT group. CONCLUSION: In conclusion, we show for the first time that 5-LO deficiency protects 129S2 mice against emphysema caused by CS. We suggest that the main mechanism of pathogenesis in this model involves the imbalance between proteases and antiproteases, particularly the association between MMP-9 and TIMP-1. General significance This study demonstrates the influence of 5-LO mediated oxidative stress, inflammation, and proteolytic markers in CS exposed mice.


Assuntos
Araquidonato 5-Lipoxigenase/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo , Pneumonia/prevenção & controle , Enfisema Pulmonar/prevenção & controle , Fumaça/efeitos adversos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Western Blotting , Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Oxirredução , Pneumonia/genética , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Testes de Função Respiratória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genética
14.
Int Wound J ; 11(2): 190-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22905783

RESUMO

Silver is used worldwide in dressings for wound management. Silver has demonstrated great efficacy against a broad range of microorganisms, but there is very little data about the systemic absorption and toxicity of silver in vivo. In this study, the antimicrobial effect of the silver-coated dressing (SilverCoat(®)) was evaluated in vitro against the most common microorganisms found in wounds, including Pseudomonas aeruginosa, Candida albicans, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. We also performed an excisional skin lesion assay in mice to evaluate wound healing after 14 days of treatment with a silver-coated dressing, and we measured the amount of silver in the blood, the kidneys and the liver after treatment. Our data demonstrated that the nylon threads coated with metallic silver have a satisfactory antimicrobial effect in vitro, and the prolonged use of these threads did not lead to systemic silver absorption, did not induce toxicity in the kidneys and the liver and were not detrimental to the normal wound-healing process.


Assuntos
Bandagens , Poliésteres/farmacologia , Polietilenos/farmacologia , Prata/administração & dosagem , Cicatrização , Animais , Argiria/epidemiologia , Sobrevivência Celular , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/análise , Camundongos , Poliésteres/administração & dosagem , Polietilenos/administração & dosagem , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Infecção dos Ferimentos/prevenção & controle , Ferimentos e Lesões/microbiologia
15.
Arch Biochem Biophys ; 537(1): 72-81, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23831508

RESUMO

Our aim was to investigate CCR2 and HMGB1 involvement in a murine model of endotoxic shock. We used C57BL/6 CCR2 knockout (KO) mice and wild-type (WT) littermates to establish an optimal dose of LPS. CCR2 KO mice survived more frequently than WT mice after 80, 40 and 20 mg/kg of LPS i.p. Inflammation and redox markers were high in WT mice than in CCR2 KO mice. HMGB1 expression was reduced in CCR2 KO mice in parallel to ERK 1/2 activation. Therefore, we used glycyrrhizic acid (50 mg/kg), an HMGB1 inhibitor in WT mice injected with LPS, and mortality was fully abolished. Thus, drugs targeting CCR2 and HMGB1 could represent future resources for sepsis treatment.


Assuntos
Ácido Glicirrízico/administração & dosagem , Proteína HMGB1/metabolismo , Lipopolissacarídeos , Receptores CCR2/metabolismo , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/antagonistas & inibidores , Taxa de Sobrevida
16.
Bioorg Med Chem ; 21(24): 7570-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24262889

RESUMO

Propolis is a natural product with antioxidant properties. In this study, we tested the efficacy of propolis against acute lung inflammation (ALI) caused by cigarette smoke (CS). C57BL6 male mice were exposed to CS and treated with propolis (200mg/kg orally, CS+P) or only with propolis (P). A Control group treated with propolis was sham-smoked (Control+P). We collected the lungs for histological and biochemical analyses. We observed an increase in alveolar macrophages and neutrophils in the CS group compared with the Control+P. These counts reduced in the CS+P group compared to the CS group. The treatment with propolis normalized all biochemical parameters in the CS+P group compared with the CS group, including nitrite, myeloperoxidase level, antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), reduced glutathione/oxidized glutathione ratio and malondialdehyde. Additionally, TNF-α expression reduced in the CS+P group when compared with the CS group. These data imply a potential antioxidant and anti-inflammatory role for propolis with regard to ALI caused by CS in mice.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Pulmão/efeitos dos fármacos , Própole/farmacologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Antioxidantes/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Própole/metabolismo , Fatores de Tempo
17.
Can J Physiol Pharmacol ; 91(1): 38-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23368696

RESUMO

Pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) is an experimental protocol of right heart failure. We analyzed the role of exercise training on the right ventricle structure and function, pulmonary artery remodeling, and GSK-3ß expression. Rats were divided among the following groups: sedentary control (SC), sedentary monocrotaline (SM), trained control (TC), and trained monocrotaline (TM). Rats underwent exercise training for a period of 5 weeks, with 3 weeks post-MCT injection. Rats in the SM and TM groups presented with an increase in right ventricle hypertrophy indexes and lung congestion. The right ventricular end diastolic pressure (RVEDP), right ventricular systolic pressure (RVSP), and its minimum and maximal pressure derivates were increased in the SM and TM groups. The right ventricle interstitial volume pulmonary artery thickness and p-GSK-3ß/GSK-3ß were increased in the MCT groups as compared with the control groups. The TM group had a reduction in interstitial volume, p-GSK-3ß/GSK-3ß ratio, pulmonary artery thickness, RVEDP, and an increase in intramyocardial vessels volume as compared with the SM group. The overall results have shown that the exercise protocol used promoted positive changes in right ventricle and pulmonary artery remodeling. These observations also suggest that structural remodeling may be influenced by signaling proteins, such as GSK-3ß.


Assuntos
Quinase 3 da Glicogênio Sintase/biossíntese , Ventrículos do Coração/efeitos dos fármacos , Monocrotalina/toxicidade , Condicionamento Físico Animal/fisiologia , Artéria Pulmonar/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Animais , Glicogênio Sintase Quinase 3 beta , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Masculino , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos , Ratos Wistar , Função Ventricular Direita/fisiologia , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
18.
Lipids ; 58(2): 59-68, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36289559

RESUMO

Olive oil has beneficial effects on skin wound healing due to its anti-inflammatory and antioxidant properties; however, the mechanism by which olive oil promotes wound healing is unclear. We evaluated the mechanisms involved in Nrf2 pathway activation by olive oil and its role in cell survival and migration in mouse dermal fibroblasts in a short-term exposition. Our data demonstrated that olive oil and oleic acid promoted reactive oxygen species (ROS) production, while olive oil and hydroxytyrosol stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Olive oil-mediated ROS production increased nuclear factor kappa B p65 expression, while olive oil-stimulated reactive nitrogen species production augmented the levels of Nrf2. Olive oil augmented cell proliferation, cell migration, and AKT phosphorylation, but decreased apoptotic cell number and cleaved caspase-3 levels. The effect of olive oil on cell migration and protein levels of AKT, BCL-2, and Nrf2 were reversed by an Nrf2 inhibitor. In conclusion, the activation of the Nrf2 pathway by olive oil promotes the survival and migration of dermal fibroblasts that are essential for the resolution of skin wound healing.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Azeite de Oliva/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibroblastos , Estresse Oxidativo
19.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978796

RESUMO

Acute and chronic lung injuries are among the leading causes of mortality worldwide. Lung injury can affect several components of the respiratory system, including the airways, parenchyma, and pulmonary vasculature. Although acute and chronic lung injuries represent an enormous economic and clinical burden, currently available therapies primarily focus on alleviating disease symptoms rather than reversing and/or preventing lung pathology. Moreover, some supportive interventions, such as oxygen and mechanical ventilation, can lead to (further) deterioration of lung function and even the development of permanent injuries. Lastly, sepsis, which can originate extrapulmonary or in the respiratory system itself, contributes to many cases of lung-associated deaths. Considering these challenges, we aim to summarize molecular and cellular mechanisms, with a particular focus on airway inflammation and oxidative stress that lead to the characteristic pathophysiology of acute and chronic lung injuries. In addition, we will highlight the limitations of current therapeutic strategies and explore new antioxidant-based drug options that could potentially be effective in managing acute and chronic lung injuries.

20.
Antioxidants (Basel) ; 12(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371988

RESUMO

This study investigates the role of eugenol (EUG) on CS-induced acute lung injury (ALI) and how this compound is able to modulate macrophage activity. C57BL/6 mice were exposed to 12 cigarettes/day/5days and treated 15 min/day/5days with EUG. Rat alveolar macrophages (RAMs) were exposed to CSE (5%) and treated with EUG. In vivo, EUG reduced morphological changes inflammatory cells, oxidative stress markers, while, in vitro, it induced balance in the oxidative stress and reduced the pro-inflammatory cytokine release while increasing the anti-inflammatory one. These results suggest that eugenol reduced CS-induced ALI and acted as a modulator of macrophage activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA