Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 157(4): 1481-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26901092

RESUMO

Bone is increasingly recognized as an endocrine organ that can regulate systemic hormones and metabolism through secreted factors. Although bone loss and increased adiposity appear to be linked clinically, whether conditions of increased bone formation can also change systemic metabolism remains unclear. In this study, we examined how increased osteogenesis affects metabolism by using an engineered G protein-coupled receptor, Rs1, to activate Gs signaling in osteoblastic cells in ColI(2.3)(+)/Rs1(+) transgenic mice. We previously showed that these mice have dramatically increased bone formation resembling fibrous dysplasia of the bone. We found that total body fat was significantly reduced starting at 3 weeks of age. Furthermore, ColI(2.3)(+)/Rs1(+) mice showed reduced O2 consumption and respiratory quotient measures without effects on food intake and energy expenditure. The mice had significantly decreased serum triacylglycerides, leptin, and adiponectin. Resting glucose and insulin levels were unchanged; however, glucose and insulin tolerance tests revealed increased sensitivity to insulin. The mice showed resistance to fat accumulation from a high-fat diet. Furthermore, ColI(2.3)(+)/Rs1(+) mouse bones had dramatically reduced mature adipocyte differentiation, increased Wingless/Int-1 (Wnt) signaling, and higher osteoblastic glucose utilization than controls. These findings suggest that osteoblasts can influence both local and peripheral adiposity in conditions of increased bone formation and suggest a role for osteoblasts in the regulation of whole-body adiposity and metabolic homeostasis.


Assuntos
Adiposidade/fisiologia , Medula Óssea/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Adiponectina/sangue , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Western Blotting , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Expressão Gênica , Leptina/sangue , Masculino , Camundongos Transgênicos , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Triglicerídeos/sangue
2.
Genetics ; 186(2): 461-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20628040

RESUMO

Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/metabolismo , Histonas/química , Histonas/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Evolução Molecular , Teste de Complementação Genética , Histonas/genética , Cinetocoros/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA