Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 58(20): 13945-13952, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31578864

RESUMO

A new series of (Cu)tet[Cr2-xSnx]octS4-ySey compounds was prepared by solid-state reaction at high temperature. Determination of the crystal structures by single-crystal X-ray diffraction revealed that CuCr1.0Sn1.0S2.1Se1.9, CuCr1.2Sn0.8S2.1Se1.9, CuCr1.3Sn0.7S2.2Se1.8, and CuCr1.5Sn0.5S2.2Se1.8 crystallize in a normal spinel-type structure (cubic Fd3m space group). The powder X-ray diffraction patterns and Rietveld refinements of nominal CuCr2-xSnxS2Se2 (x = 0.2, 0.4, 0.6, 0.8, and 1.0) were consistent with single-crystal X-ray diffraction data. Raman scattering analysis revealed that the A1g, Eg, and three F2g vibrational modes were observed in the spectra. The signal at ∼382 cm-1, corresponding to the A1g mode, is attributed to symmetrical stretching of the chalcogen bond with respect to the tetrahedral metal. The samples with x = 0.2 and 0.4 exhibited ferromagnetic behavior, characterized by large positive θ values of +261 and +189 K, respectively. In contrast, antiferromagnetic (AF) behavior was observed for CuCrSnS2Se2 with a Néel temperature (TN) of 18.8 K and a θ value of -36.0 K. Density functional theory (DFT) and effective magnetic moments (µeff/µtheo) experimentally measured showed that the Sn ion is in oxidation state of 4+, i.e., diamagnetic behavior. DFT calculations revealed that the most stable magnetic state of CuCr1.0Sn1.0S2Se2 was AF with exchange constants for first- and second-neighbor interactions of J1 = 56.22 cm-1 and J2 = -33.88 cm-1. Thus, the AF interactions between ferromagnetic chains in CuCr1.0Sn1.0S2Se2 originate from the presence of diamagnetic Sn cations.

3.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569918

RESUMO

Herein, we report the synthesis, structural and microstructural characterization, and thermoelectric properties of AgSnm[Sb0.8Bi0.2]Te2+m and Br-doped telluride systems. These compounds were prepared by solid-state reaction at high temperature. Powder X-ray diffraction data reveal that these samples exhibit crystal structures related to the NaCl-type lattice. The microstructures and morphologies are investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and high-resolution transmission electron microscopy (HRTEM). Positive values of the Seebeck coefficient (S) indicate that the transport properties are dominated by holes. The S of undoped AgSnm[Sb0.8Bi0.2]Te2+m ranges from +40 to 57 µV·K-1. Br-doped samples with m = 2 show S values of +74 µV·K-1 at RT, and the Seebeck coefficient increases almost linearly with increasing temperature. The total thermal conductivity (κtot) monotonically increases with increasing temperature (10-300 K). The κtot values of undoped AgSnm[Sb0.8Bi0.2]Te2+m are ~1.8 W m-1 K-1 (m = 4) and ~1.0 W m-1 K-1 (m = 2) at 300 K. The electrical conductivity (σ) decreases almost linearly with increasing temperature, indicating metal-like behavior. The ZT value increases as a function of temperature. A maximum ZT value of ~0.07 is achieved at room temperature for the Br-doped phase with m = 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA