Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 93(6): 964-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25627107

RESUMO

Canonical transient receptor potential (TRPC) channels are plasma membrane cation channels included in the TRP superfamily. TRPC1 is expressed widely in the central nervous system and is linked to group I metabotropic glutamate receptors (mGluRs). In the auditory brainstem, TRPC1 expression has never been described, although group I mGluRs are present. In the central nucleus of the inferior colliculus (CIC), activation of group I mGluRs induces an extracellular Ca(2+) influx after store depletion. Therefore, this study examines whether TRPC1 is expressed in this region to establish a correlation with mGluRs. By quantitative reverse transcription-polymerase chain reaction and Western blotting, this study assesses the presence of TRPC1 along with both group I mGluR subtypes mGluR1 and mGluR5 in the rat inferior colliculus (IC). All these molecules present a robust expression in the IC. By confocal double immunofluorescence, this study also demonstrates that TRPC1 colocalizes with parvalbumin, a CIC neuronal marker, in many cells. Conversely, TRPC1 was lacking in glial fibrillary acidic protein-positive glial cells. All the glutamate acid decarboxylase 67 (GAD67)-immunoreactive neurons and many GAD67-negative neurons were positive to TRPC1, which indicates the presence of TRPC1 in γ-aminobutyric acid (GABA)-ergic and non-GABAeregic neurons. With regard to subcellular distribution, TRPC1 was absent in synaptophysin-immunoreactive axonic terminals but colocalized with postsynaptic marker microtubule-associated protein 2 in cell bodies and dendrites. TRPC1 totally overlapped group I mGluRs, which supports the involvement of TRPC1 in the mGluR pathway and, likely, in auditory signal processing at the midbrain level. .


Assuntos
Colículos Inferiores/citologia , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Parvalbuminas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/fisiologia , Frações Subcelulares/metabolismo , Sinaptofisina/metabolismo , Canais de Cátion TRPC/genética
2.
PLoS One ; 13(7): e0200878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048489

RESUMO

OBJECTIVES: To fully clarify the role of Mitogen Activated Protein Kinase in the therapeutic response to Sorafenib in Renal Cell Carcinoma as well as the cell death mechanism associated to this kinase inhibitor, we have evaluated the implication of several Mitogen Activated Protein Kinases in Renal Cell Carcinoma-derived cell lines. MATERIALS AND METHODS: An experimental model of Renal Cell Carcinoma-derived cell lines (ACHN and 786-O cells) was evaluated in terms of viability by MTT assay, induction of apoptosis by caspase 3/7 activity, autophagy induction by LC3 lipidation, and p62 degradation and kinase activity using phospho-targeted antibodies. Knock down of ATG5 and ERK5 was performed using lentiviral vector coding specific shRNA. RESULTS: Our data discard Extracellular Regulated Kinase 1/2 and 5 as well as p38 Mitogen Activated Protein Kinase pathways as mediators of Sorafenib toxic effect but instead indicate that the inhibitory effect is exerted through the PI3K/Akt signalling pathway. Furthermore, we demonstrate that inhibition of Akt mediates cell death associated to Sorafenib without caspase activation, and this is consistent with the induction of autophagy, as indicated by the use of pharmacological and genetic approaches. CONCLUSION: The present report demonstrates that Sorafenib exerts its toxic effect through the induction of autophagy in an Akt-dependent fashion without the implication of Mitogen Activated Protein Kinase. Therefore, our data discard the use of inhibitors of the RAF-MEK-ERK1/2 signalling pathway in RCC and support the use of pro-autophagic compounds, opening new therapeutic opportunities for Renal Cell Carcinoma.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sorafenibe/farmacologia , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
PLoS One ; 7(12): e51825, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251635

RESUMO

Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.


Assuntos
Canais Iônicos/genética , Canais Iônicos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Mentol/farmacologia , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/patologia , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Transfecção , Cicatrização/efeitos dos fármacos , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA