Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(10): 6853-6864, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38661472

RESUMO

Macrocyclization has proven to be a useful design strategy in the development of efficient anion receptors. In addition to the ring size, the overall preorganization due to structural rigidity is key. To explore this in the context of developing an efficient pyrophosphate receptor, three macrocycles featuring a 26-membered interior ring size and similar H-bonding motifs have been synthesized, and their anion binding ability has been investigated. Computational studies and nuclear magnetic resonance (NMR) data showed different degrees of preorganization as a result of differences in flexibility. The interaction of the three macrocycles with chloride, dihydrogen phosphate, and dihydrogen pyrophosphate was investigated in solution by NMR and ultraviolet-visible spectroscopy and in the solid state by X-ray crystallography. The tetrahydrazone-based macrocycle featuring intermediate flexibility exhibited the best affinity for all three anions investigated. Our results suggest that in addition to the proper preorganization of binding groups in a macrocycle a certain degree of flexibility is also required for an optimal affinity with the target guest.

2.
Angew Chem Int Ed Engl ; 63(5): e202318261, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38063265

RESUMO

Inspired by nature, artificial hydrogen bond-based anion receptors have been developed to achieve high anion selectivity; however, their binding affinity is usually low. The potency of these receptors is usually increased by the introduction of aryl substituents, which withdraw electrons from their binding site through the resonance effect. Here, we show that the polarization of the C(sp3 )-H binding site of bambusuril receptors, and thus their potency to bind anions, can be modulated by the inductive effect. The presence of electron-withdrawing groups on benzyl substituents of bambusurils significantly increases their binding affinities to halides, resulting in the strongest iodide receptor reported to date with an association constant greater than 1013  M-1 in acetonitrile. A Hammett plot showed that while the bambusuril affinity toward halides linearly increases with the electron-withdrawing power of their substituents, their binding selectivity remains essentially unchanged.

3.
J Am Chem Soc ; 145(30): 16310-16314, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471295

RESUMO

Synthetic anion receptors are increasingly being explored for the transport of anions across lipid membranes because of their potential therapeutic applications. A considerable amount of research focuses on the transport of chloride, whereas the transmembrane transport of inorganic phosphate has not been reported to date, despite the biological relevance of this anion. Here we present a calix[4]pyrrole with a bisurea strap that functions as a receptor and transporter for H2PO4-, relying on the formation of eight hydrogen bonds and efficient encapsulation of the anion. Using a phosphate-sensitive lanthanide probe and 31P NMR spectroscopy, we demonstrate that this receptor can transport phosphate into vesicles by H2PO4-/Cl- antiport, H2PO4- uniport, and Cs+/H2PO4- symport mechanisms. This first example of inorganic phosphate transport by a neutral receptor opens perspectives for the future development of transporters for various biological phosphates.

4.
J Org Chem ; 87(15): 9829-9838, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35862261

RESUMO

Bambusurils are macrocyclic molecules that are known for their high binding affinity and selectivity toward anions. Here, we present the preparation of two bambusurils bearing fluorinated substituents and one carboxylic function. These monofunctionalized bambusurils were conjugated with crown ether and cholesterol units. The resulting conjugates were successfully tested in liquid-liquid extraction of inorganic salts and chloride/bicarbonate transport across lipid bilayers.


Assuntos
Cloretos , Éteres de Coroa , Ânions/química , Cloretos/química , Bicamadas Lipídicas/química
5.
Org Biomol Chem ; 20(38): 7658-7663, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134504

RESUMO

Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport by carbazoles with two amido/thioamido groups using a bicarbonate-sensitive europium(III) probe in liposomes and found a highly remarkable transporter concentration dependence. This can be explained by a combination of two distinct transport mechanisms: HCO3-/Cl- exchange and a combination of unassisted CO2 diffusion and HCl transport, of which the respective contributions were quantified. The compounds studied were found to be highly potent HCl transporters. Based on the mechanistic insights on anion transport, we have tested the antimicrobial activity of these compounds and found a good correlation with their ion transport properties and a high activity against Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Bicarbonatos , Transporte Biológico , Carbazóis , Dióxido de Carbono , Cloretos , Európio , Concentração de Íons de Hidrogênio , Transporte de Íons , Ionóforos/farmacologia , Bicamadas Lipídicas , Lipossomos
6.
Chemistry ; 27(26): 7367-7375, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932059

RESUMO

Anion receptors can be used to transport ions across lipid bilayers, which has potential for therapeutic applications. Synthetic bicarbonate transporters are of particular interest, as defects in transmembrane transport of bicarbonate are associated with various diseases. However, no convenient method exists to directly observe bicarbonate transport and study the mechanisms involved. Here, an assay is presented that allows the kinetics of bicarbonate transport into liposomes to be monitored directly and with great sensitivity. The assay utilises an encapsulated europium(III) complex, which exhibits a large increase in emission intensity upon binding bicarbonate. Mechanisms involving CO2 diffusion and the dissipation of a pH gradient are shown to be able to lead to an increase in bicarbonate concentration within liposomes, without transport of the anion occurring at all. By distinguishing these alternative mechanisms from actual bicarbonate transport, this assay will inform the future development of bicarbonate transporters.


Assuntos
Bicarbonatos , Bicamadas Lipídicas , Transporte Biológico , Concentração de Íons de Hidrogênio , Transporte de Íons , Cinética
7.
Chemistry ; 27(26): 7320, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956385

RESUMO

Invited for the cover of this issue are Dr. Stephen Butler, Dr. Hennie Valkenier and co-workers at Université Libre de Bruxelles, Loughborough University, Masaryk University, and the University of Bristol. The image depicts the transport of bicarbonate anions versus the spontaneous diffusion of CO2 across the lipid bilayer of a liposome. Read the full text of the article at 10.1002/chem.202100491.

8.
Org Biomol Chem ; 19(38): 8324-8337, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34523662

RESUMO

Synthetic anion transporters can be developed using anion receptors that are able to bind the anion and stabilize it in the lipophilic interior of a bilayer membrane, and they usually contain functional groups with acidic NHs, such as ureas, thioureas and squaramides. To assess the suitability of acylhydrazones as a new functional group for the preparation of anion transporters, we have studied a family of thioureas functionalized with these and related functional groups. 1H NMR titrations and DFT calculations indicate that the thioureas bearing acylhydrazone groups behave as chloride receptors with two separate binding sites, of which the acylhydrazone binds weaker than the thiourea. Chloride transport studies show that the additional binding site has a detrimental effect on thiourea-based transporters, and this phenomenon is also observed for bis(thio)ureas with two separate binding sites. We propose that the presence of a second anion binding unit hinders the transport activity of the thiourea due to additional interactions with the phospholipids of the membrane. In agreement with this hypothesis, extensive molecular dynamics simulations suggest that the molecules will tend to be positioned in the water/lipid interface, driven by the interaction of the NHs of the thiourea and of the acylhydrazone groups with the POPC polar head groups and water molecules. Moreover, the interaction energies show that the poorest transporters have indeed the strongest interactions with the membrane phospholipids, inhibiting chloride transport. This detrimental effect of additional functional groups on transport activity should be considered when designing new ion transporters, unless these groups cooperatively promote anion recognition and transmembrane transport.

9.
Chemphyschem ; 21(1): 83-89, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31659835

RESUMO

The straightforward synthesis of a new hexahomotrioxacalix[3]arene-based ligand capped by a tren subunit was developed and the binding properties of the corresponding zinc complex were explored by NMR spectroscopy. Similarly to the closely related calix[6]tren-based systems, the homooxacalixarene core ensures the mononuclearity of the zinc complex and the metal center displays a labile coordination site for exogenous guests. However, very different host-guest properties were observed: i) in CDCl3 , the zinc complex strongly binds a water molecule and is reluctant to recognize other neutral guests, ii) in CD3 CN, the exo-coordination of anions prevails. Thus, in strong contrast to the calix[6]tren-based systems, the coordination of neutral guests that thread through the small rim and fill the polyaromatic cavity was not observed. This unique behaviour is likely due to the fact that the 18-membered ethereal macrocycle is too small to let a molecule threading through it. This work illustrates the key role played by the second coordination sphere in the binding properties of metal complexes.

10.
Angew Chem Int Ed Engl ; 58(21): 6921-6925, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30925004

RESUMO

Given the biological importance of organic cations, the facilitated transport of organic ion pairs could find many applications. Calix[6]arene tris(thio)ureas, which possess a cavity that can accommodate primary ammonium ions, can not only act as carriers for Cl- /NO3- antiport but can also perform the cotransport of PrNH3 Cl. Transport was monitored by fluorescence spectroscopy and the presence of the different species inside the vesicles was characterized by 1 H and 35 Cl NMR experiments involving shift reagents. The cotransport of PrNH3 Cl was also observed by receptors deprived of a cavity, but the presence of the cavity conveys an advantage, as the cotransport by calix[6]arenes was observed to be more efficient than the Cl- /NO3- antiport, which is not the case with receptors without a cavity. The role played by the cavity was further highlighted by the disappearance of this advantage when using a bulky ammonium ion, which cannot be complexed within the cavity.

11.
Chemistry ; 24(23): 6262-6268, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29493830

RESUMO

Synthetic anion carriers (anionophores) have potential as biomedical research tools and as treatments for conditions arising from defective natural transport systems (notably cystic fibrosis). Highly active anionophores that are readily accessible and easily deliverable are especially valuable. Previous work has resulted in steroid and trans-decalin based anionophores with exceptional activity for chloride/nitrate exchange in vesicles, but poor accessibility and deliverability. This work shows that anthracene 1,8-bisureas can fulfil all three criteria. In particular, a bis-nitrophenyl derivative is prepared in two steps from commercial starting materials, yet shows comparable transport activity to the best currently known. Moreover, unlike earlier highly active systems, it does not need to be preincorporated in test vesicles but can be introduced subsequent to vesicle formation. This transporter also shows the ability to transfer between vesicles, and is therefore uniquely effective for anion transport at low transporter loadings. The results suggest that anthracene bisureas are promising candidates for application in biological research and medicine.

12.
Chemistry ; 24(32): 8178-8185, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603485

RESUMO

Recent work has identified a bis-(p-nitrophenyl)ureidodecalin anion carrier as a promising candidate for biomedical applications, showing good activity for chloride transport in cells yet almost no cytotoxicity. To underpin further development of this and related compounds, a detailed structural and binding investigation is reported. Crystal structures of the transporter as five solvates confirm the diaxial positioning of urea groups while revealing a degree of conformational flexibility. Structures of complexes with Cl- , Br- , NO3- , SO42- and AcO- , supported by computational studies, show how the binding site can adapt to accommodate these anions. 1 H NMR binding studies revealed exceptionally high affinities for anions in DMSO, decreasing in the order SO42- >H2 PO4- ≈HCO3- ≈AcO- ≫HSO4- >Cl- >Br- >NO3- >I- . Analysis of the binding results suggests that selectivity is determined mainly by the H-bond acceptor strength of different anions, but is also modulated by receptor geometry.


Assuntos
Ânions/química , Cloretos/química , Nitrofenóis/química , Ureia/química , Sítios de Ligação , Computadores Moleculares , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular
13.
Langmuir ; 34(21): 6021-6027, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29724105

RESUMO

Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.

14.
Org Biomol Chem ; 16(7): 1083-1087, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376532

RESUMO

Ortho-Phenylene bis-ureas serve as anionophores in cells expressing halide-sensitive yellow fluorescent protein, as well as in synthetic vesicles. Activities can reach high levels, and are strongly dependent on the deliverability of the transporters.


Assuntos
Transporte de Íons , Fenilenodiaminas/química , Ureia/análogos & derivados , Ânions/metabolismo , Proteínas de Bactérias , Membrana Celular/metabolismo , Halogênios/farmacologia , Membranas Intracelulares/metabolismo , Proteínas Luminescentes , Ureia/química , Ureia/metabolismo
15.
Langmuir ; 33(33): 8253-8259, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28727432

RESUMO

Labile ligands such as thiols and carboxylates are commonly used to functionalize AuNPs, though little control over the composition is possible when mixtures of ligands are used. It was shown recently that robustly functionalized AuNPs can be obtained through the reductive grafting of calix[4]arenes bearing diazonium groups on the large rim. Here, we report a calix[4]arene-tetradiazonium decorated by four oligo(ethylene glycol) chains on the small rim, which upon grafting gave AuNPs with excellent stability thanks to the C-Au bonds. Mixtures of this calixarene and one with four carboxylate groups were grafted on AuNPs. The resulting particles were analyzed by infrared spectroscopy, which revealed that the composition of the ligand shell clearly reflected the ratio of calixarenes that was present in solution. This strategy opens the way to robustly protected AuNPs with well-defined numbers of functional or postfunctionalizable groups.

16.
Chemistry ; 22(6): 2004-2011, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748870

RESUMO

Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithioureidodecalin anionophores, in which alkyl substituents on one face are varied from C0 to C10 in two-carbon steps. Activities increase then decrease as the chain length grows, peaking quite sharply at C6 . Molecular dynamics simulations showed the transporter chloride complexes releasing chloride as they approach the membrane-aqueous interface. The free transporter then stays at the interface, adopting an orientation that depends on the alkyl substituent. If chloride release is prevented, the complex is positioned similarly. Longer chains tilt the binding site away from the interface, potentially freeing the transporter or complex to move through the membrane. However, chains which are too long can also slow transport by inhibiting movement, and especially reorientation, within the phospholipid bilayer.

18.
Nano Lett ; 15(8): 5569-73, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26182342

RESUMO

It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the molecule is reduced resulting into a 10-fold increase in the off-resonant differential conductance. Theoretical calculations link the change in differential conductance to a reduction-induced change in conjugation, thereby lifting destructive interference of transport pathways.


Assuntos
Antraquinonas/química , Transistores Eletrônicos , Condutividade Elétrica , Eletrodos , Elétrons , Compostos de Sulfidrila/química
19.
J Am Chem Soc ; 137(15): 4948-51, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25851041

RESUMO

Biotin[6]uril hexaesters represent a new class of anionophores which operate solely through C-H···anion interactions. The use of soft H-bond donors favors the transport of less hydrophilic anions (e.g., Cl(-), NO3(-)) over hard, stongly hydrated anions (e.g., HCO3(-) and SO4(2-)). Especially relevant is the selectivity between chloride and bicarbonate, the major inorganic anions in biological systems.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Cloretos/química , Ésteres/química , Compostos Macrocíclicos/química , Ânions/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Ésteres/síntese química , Ligação de Hidrogênio , Compostos Macrocíclicos/síntese química , Conformação Molecular
20.
Angew Chem Int Ed Engl ; 54(7): 2137-41, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25556546

RESUMO

Transmembrane ion transporters (ionophores) are widely investigated as supramolecular agents with potential for biological activity. Tests are usually performed in synthetic membranes that are assembled into large unilamellar vesicles (LUVs). However transport must be followed through bulk properties of the vesicle suspension, because LUVs are too small for individual study. An alternative approach is described whereby ion transport can be revealed and quantified through direct observation. The method employs giant unilamellar vesicles (GUVs), which are 20-60 µm in diameter and readily imaged by light microscopy. This allows characterization of individual GUVs containing transporter molecules, followed by studies of transport through fluorescence emission from encapsulated indicators. The method provides new levels of certainty and relevance, given that the GUVs are similar in size to living cells. It has been demonstrated using a highly active anion carrier, and should aid the development of compounds for treating channelopathies such as cystic fibrosis.


Assuntos
Ionóforos/metabolismo , Íons/metabolismo , Lipossomas Unilamelares/metabolismo , Transporte Biológico , Transporte de Íons , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA