RESUMO
Agro-industrial residue valorization under the umbrella of the circular bioeconomy (CBE) has prompted the search for further forward-thinking alternatives that encourage the mitigation of the industry's environmental footprint. From this perspective, second-life valorization (viz., thermoplastic composites) has been explored for agro-industrial waste (viz., oil palm empty fruit bunch fibers, OPEFBFs) that has already been used previously in other circular applications (viz., the removal of domestic wastewater contaminants). Particularly, this ongoing study evaluated the performance of raw residues (R-OPEFBFs) within three different size ranges (250-425, 425-600, 600-800 µm) both before and after their utilization in biofiltration processes (as post-adsorbents, P-OPEFBFs) to reinforce a polymer matrix of acrylic resin. The research examined the changes in R-OPEFBF composition and morphology caused by microorganisms in the biofilters and their impact on the mechanical properties of the composites. Smaller R-OPEFBFs (250-425 µm) demonstrated superior mechanical performance. Additionally, the composites with P-OPEFBFs displayed significant enhancements in their mechanical properties (3.9-40.3%) compared to those with R-OPEFBFs. The combination of the three fiber sizes improved the mechanical behavior of the composites, indicating the potential for both R-OPEFBFs and P-OPEFBFs as reinforcement materials in composite applications.
RESUMO
Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.
RESUMO
Biological agents and their metabolic activity produce significant changes over the microstructure and properties of composites reinforced with natural fibers. In the present investigation, oil palm empty fruit bunch (OPEFB) fiber-reinforced acrylic thermoplastic composites were elaborated at three processing temperatures and subjected to water immersion, Prohesion cycle, and continuous salt-fog aging testing. After exposition, microbiological identification was accomplished in terms of fungal colonization. The characterization was complemented by weight loss, mechanical, infrared, and thermogravimetric analysis, as well as scanning electron microscopy. As a result of aging, fungal colonization was observed exclusively after continuous salt fog treatment, particularly by different species of Aspergillus spp. genus. Furthermore, salt spray promoted filamentous fungi growth producing hydrolyzing enzymes capable of degrading the cell walls of OPEFB fibers. In parallel, these fibers swelled due to humidity, which accelerated fungal growth, increased stress, and caused micro-cracks on the surface of composites. This produced the fragility of the composites, increasing Young's modulus, and decreasing both elongation at break and toughness. The infrared spectra showed changes in the intensity and appearance of bands associated with functional groups. Thermogravimetric results confirmed fungal action as the main cause of the deterioration.
RESUMO
In recent years, the use of oil palm wastes has been an interesting approach for the development of sustainable polymer matrix composites. Nevertheless, the water absorption behavior of these materials is one of the most critical factors for their performance over time. In this study, the water uptake characteristics of acrylic thermoplastic matrix composites reinforced separately with oil palm empty fruit bunch (OPEFB) and oil palm kernel shell (OPKS) were evaluated through immersion test in distilled water. The specimens of both composites were manufactured using the compression molding technique at three temperatures (80, 100, and 120 °C) using different particle sizes (425−600 and 600−850 µm). The composites, before and after the absorption test, were characterized by means of Fourier transform infrared spectroscopy, thermogravimetry, and scanning electron microscopy. The evaluation was complemented by the application of the Fickian diffusion model. Overall results showed that water absorption capacity decreased at a higher processing temperature and a larger particle size. In particular, it was observed that the type of reinforcement also influenced both water absorption and diffusivity. OPKS/acrylic and OPEFB/acrylic composites reached a maximum absorption of 77 and 86%, with diffusivities of 7.3 × 10−9 and 15.2 × 10−9 m2/min, respectively. Experimental evidence suggested that the absorption mechanism of the composites followed a non-Fickian model (n < 1.0).
RESUMO
Natural fibers used as reinforcements or fillers for materials development greatly affect properties and performance of end-use applications. As a consequence of conditioning processes such as grinding and sieving, average fiber length varies significantly. It is thus necessary to estimate the length as statistical data distribution rather than a single mean value. This approach implies length measurement of a significant number of fibers; however, a very high number of data points requires not only long-time frames but also significative amount of work. To address these issues, this article details a facile methodology to measure the length of a large number of natural fibers of oil palm empty fruit bunch (OPEFB) together with a statistical analysis to verify the correspondence between theoretical distributions and experimental data. Moreover, further information related to spectrophotometric, physico-chemical, mechanical, thermal, and morphological characteristics of OPEFB fibers coming from oil palm cultivation in Ecuador are presented. The data will contribute to comprehensively and rigorously describe the overall effects of natural fiber lengths on material properties.