Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 14(28): e1800863, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29862640

RESUMO

Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.


Assuntos
Benzenossulfonatos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Impressão Molecular/métodos , Neuroglia/metabolismo , Polímeros/química , Animais , Astrócitos/citologia , Quimiocinas/metabolismo , Técnicas Eletroquímicas , Microeletrodos , Ratos Sprague-Dawley , Ratos Wistar
2.
J Mater Sci Mater Med ; 26(2): 120, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25677116

RESUMO

Neuroprosthetic technologies for therapeutic neuromodulation have seen major advances in recent years but these advances have been impeded due to electrode failure or a temporal deterioration in the device recording or electrical stimulation potential. This deterioration is attributed to an intrinsic host tissue response, namely glial scarring or gliosis, which prevents the injured neurons from sprouting, drives neurite processes away from the neuroelectrode and increases signal impedance by increasing the distance between the electrode and its target neurons. To address this problem, there is a clinical need to reduce tissue encapsulation of the electrodes in situ and improve long-term neuroelectrode function. Nanotopographical modification has emerged as a potent methodology for the disruption of protein adsorption and cellular adhesion in vitro. This study investigates the use of block copolymer self-assembly technique for the generation of sub-20 nm nanowire features on silicon substrates. Critically, these nanostructures were observed to significantly reduce electrical impedance and increase conductivity. Human neuroblastoma SH-SY5Y cells cultured on nanowire substrates for up to 14 days were associated with enhanced focal adhesion reinforcement and a reduction in proliferation. We conclude that nanowire surface modulation may offer significant potential as an electrode functionalization strategy.


Assuntos
Microeletrodos , Nanofios/química , Nanofios/ultraestrutura , Neurônios/citologia , Neurônios/fisiologia , Silício/química , Linhagem Celular , Sobrevivência Celular/fisiologia , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais
3.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37737728

RESUMO

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Assuntos
Líquidos Iônicos , Nanoestruturas , Humanos , Oxirredução , Compostos de Estanho/química
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5872-5875, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892455

RESUMO

Soft, flexible polymer-based bioelectronics are a promising approach to minimize the chronic inflammatory reactions associated with metallic devices, impairing long-term device reliability and functionality. This work demonstrates the fabrication of conductive elastomers (CEs) consisting of chemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires embedded within a polyurethane (PU) elastomeric matrix, resulting in soft and flexible, fully polymeric electrode materials. Increasing PEDOT nanowire loadings resulted in an improvement in electrochemical properties and conductivity, an increased Young's modulus and reduced strain at failure. Nanowire CEs were also found to have significantly improved electrochemical performance compared to one of the standard electrode materials, platinum (Pt). Indirect in vitro cytocompatibility test was carried out to investigate the effect of leachable substances from the CE on primary rodent cells. Nanowire CEs provide a promising alternative to metals for the fabrication of soft bioelectronics.


Assuntos
Elastômeros , Nanofios , Condutividade Elétrica , Polímeros , Reprodutibilidade dos Testes
5.
Mater Sci Eng C Mater Biol Appl ; 121: 111857, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579489

RESUMO

Biodegradable strain sensors able to undergo controlled degradation following implantation have recently received significant interest as novel approaches to detect pathological tissue swelling or non-physiological stresses. In this study, the physicomechanical, electrochemical and active pressure sensing behavior of an electrically conductive and biodegradable poly(glycerol sebacate urethane) (PGSU) composite, reinforced with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) functionalized carbon nanotubes (CNTs), was evaluated in vitro. Analysis of these PGSU-CNTs composites demonstrated that the incorporation of functionalized CNTs into a biodegradable elastomer resulted in enhanced mechanical strength, conductivity and tailored matrix biodegradation. PGSU-CNT composites were subsequently formulated into flexible and active pressure sensors which demonstrated optimal sensitivity to applied 1% uniaxial tensile strains. Finally, cytocompatibility analysis a with primary neural culture confirmed that PGSU-CNT composites exhibited low cytotoxicity, and supported neuron adhesion, viability, and proliferation in vitro.


Assuntos
Nanotubos de Carbono , Compostos Bicíclicos Heterocíclicos com Pontes , Glicerol , Polímeros , Uretana
6.
Front Bioeng Biotechnol ; 8: 601704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240868

RESUMO

The development of 3D neural tissue analogs is of great interest to a range of biomedical engineering applications including tissue engineering of neural interfaces, treatment of neurodegenerative diseases and in vitro assessment of cell-material interactions. Despite continued efforts to develop synthetic or biosynthetic hydrogels which promote the development of complex neural networks in 3D, successful long-term 3D approaches have been restricted to the use of biologically derived constructs. In this study a poly (vinyl alcohol) biosynthetic hydrogel functionalized with gelatin and sericin (PVA-SG), was used to understand the interplay between cell-cell communication and cell-material interaction. This was used to probe critical short-term interactions that determine the success or failure of neural network growth and ultimately the development of a useful model. Complex primary ventral mesencephalic (VM) neural cells were encapsulated in PVA-SG hydrogels and critical molecular cues that demonstrate mechanosensory interaction were examined. Neuronal presence was constant over the 10 day culture, but the astrocyte population decreased in number. The lack of astrocytic support led to a reduction in neural process outgrowth from 24.0 ± 1.3 µm on Day 7 to 7.0 ± 0.1 µm on Day 10. Subsequently, purified astrocytes were studied in isolation to understand the reasons behind PVA-SG hydrogel inability to support neural network development. It was proposed that the spatially restrictive nature (or tight mesh size) of PVA-SG hydrogels limited the astrocytic actin polymerization together with a cytoplasmic-nuclear translocation of YAP over time, causing an alteration in their cell cycle. This was confirmed by the evaluation of p27/Kip1 gene that was found to be upregulated by a twofold increase in expression at both Days 7 and 10 compared to Day 3, indicating the quiescent stage of the astrocytes in PVA-SG hydrogel. Cell migration was further studied by the quantification of MMP-2 production that was negligible compared to 2D controls, ranging from 2.7 ± 2.3% on Day 3 to 5.3 ± 2.9% on Day 10. This study demonstrates the importance of understanding astrocyte-material interactions at the molecular level, with the need to address spatial constraints in the 3D hydrogel environment. These findings will inform the design of future hydrogel constructs with greater capacity for remodeling by the cell population to create space for cell migration and neural process extension.

7.
J Mater Chem B ; 7(10): 1625-1636, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254905

RESUMO

Hydrogels have been applied across a wide range of biomedical applications due to their versatility, but more recently have garnered interest as materials in bioelectronics due to the capacity to tailor their mechanical and biological properties. Hydrogel coatings in particular have been used to impart softness at the bionic device interface, deliver therapeutics and control cell interactions through presentation of peptides and growth factors. Additionally, the use of dynamic hydrogel properties has been harnessed as shuttles for the implantation of flexible electrode arrays. In all of these applications, the hydrogel must be designed not only to provide the desired performance, but also have no unexpected impacts on the surrounding tissues, such as extensive swelling that can compress the cells at the interface. Appropriate selection and design of hydrogel systems for bioelectronics requires an understanding of the physical, chemical and biological properties of hydrogels as well as their structure-property relationships. This review covers the design rationale for application of hydrogels systems for use in bioelectronic devices with a focus on in vivo applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Hidrogéis/química , Humanos
8.
Biomater Sci ; 7(4): 1372-1385, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30672514

RESUMO

Flexible polymeric bioelectronics have the potential to address the limitations of metallic electrode arrays by minimizing the mechanical mismatch at the device-tissue interface for neuroprosthetic applications. This work demonstrates the straightforward fabrication of fully organic electrode arrays based on conductive elastomers (CEs) as a soft, flexible and stretchable electroactive composite material. CEs were designed as hybrids of polyurethane elastomers (PU) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), with the aim of combining the electrical properties of PEDOT:PSS with the mechanical compliance of elastomers. CE composites were fabricated by solvent casting of PEDOT:PSS dispersed in dissolved PU at different conductive polymer (CP) loadings, from 5 wt% to 25 wt%. The formation of PEDOT:PSS networks within the PU matrix and the resultant composite material properties were examined as a function of CP loading. Increased PEDOT:PSS loading was found to result in a more connected network within the PU matrix, resulting in increased conductivity and charge storage capacity. Increased CP loading was also determined to increase the Young's modulus and reduce the strain at failure. Biological assessment of CE composites showed them to mediate ReNcell VM human neural precursor cell adhesion. The increased stiffness of CE films was also found to promote neurite outgrowth. CE sheets were directly laser micromachined into a functional array and shown to deliver biphasic waveforms with comparable voltage transients to Pt arrays in in vitro testing.


Assuntos
Elastômeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Células Cultivadas , Elastômeros/síntese química , Condutividade Elétrica , Técnicas Eletroquímicas , Eletrodos , Humanos , Polímeros/química , Poliestirenos/química , Poliuretanos/síntese química , Poliuretanos/química
9.
Biomed Mater ; 13(5): 054102, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29633721

RESUMO

Electrically conducting polymer formulations have emerged as promising approaches for the development of interfaces and scaffolds in neural engineering, facilitating the development of physicochemically modified constructs capable of cell stimulation through electrical and ionic charge transfer. In particular, topographically functionalized or neuromorphic materials are able to guide the growth of axons and promote enhanced interfacing with neuroelectrodes in vitro. In this study, we present a novel method for the formation of conducting polymer/gold assemblies via a combinational sputter and spin coating technique. The resulting multilayered PEDOT/Au substrates possessed enhanced electrochemical properties as a function of the number of deposited organic/inorganic layers. It was observed that through subsequent electrochemical conditioning it was possible to form neuromorphic fractal-like assemblies of gold particles, which significantly impacted on the electrochemical characteristics of the PEDOT/Au films. PEDOT/Au assemblies were observed to possess unique topographical features, advantageous charge storage capacity (34.9 ± 2.6 mC cm-2) and low electrical impedance (30 ± 2 Ω at 1 kHz). Furthermore, PEDOT/Au assemblies were observed to facilitate the outgrowth of neurites in a mixed ventral mesencephalon cell population and promotean increase in the neurons/astrocytes ratio relative to all experimental groups, indicating PEDOT/Au biomimetic neuromorphic assemblies as promising materials in engineering electrically conductive neural interface systems.


Assuntos
Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Materiais Revestidos Biocompatíveis/química , Ouro/química , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Polímeros/química , Animais , Eletroquímica , Fractais , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Neuritos/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
10.
Nat Biomed Eng ; 1(9): 758-770, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31015671

RESUMO

Bone grafts are one of the most commonly transplanted tissues. However, autologous grafts are in short supply, and can be associated with pain and donor-site morbidity. The creation of tissue-engineered bone grafts could help to fulfil clinical demand and provide a crucial resource for drug screening. Here, we show that vibrations of nanoscale amplitude provided by a newly developed bioreactor can differentiate a potential autologous cell source, mesenchymal stem cells (MSCs), into mineralized tissue in 3D. We demonstrate that nanoscale mechanotransduction can stimulate osteogenesis independently of other environmental factors, such as matrix rigidity. We show this by generating mineralized matrix from MSCs seeded in collagen gels with stiffness an order of magnitude below the stiffness of gels needed to induce bone formation in vitro. Our approach is scalable and can be compatible with 3D scaffolds.

11.
Nat Biomed Eng ; 1(12): 1004, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-31015702

RESUMO

In the version of this Article originally published, in Fig. 4f, the asterisk was missing; in Fig. 6a-c, the labels 'Wnt/ß-catenin signalling', 'Wnt/Ca+ pathway' and 'ERK' and their associated lines/arrows were missing; and in Fig. 6d and in the sentence beginning "In MSCs that were...", 'myosin' and 'nanostimulated', respectively, were spelt incorrectly. These errors have now been corrected in all versions of the Article.

12.
Nanomedicine (Lond) ; 11(19): 2547-63, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27618972

RESUMO

AIM: Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. MATERIALS & METHODS: Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. RESULTS: Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. CONCLUSION: This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.


Assuntos
Elastômeros/química , Nanocompostos/química , Nanotubos de Carbono/química , Neurônios/fisiologia , Poli-Hidroxialcanoatos/química , Animais , Materiais Biocompatíveis , Cálcio/química , Cálcio/metabolismo , Adesão Celular , Técnicas de Cultura de Células , Sobrevivência Celular , Condutividade Elétrica , Estimulação Elétrica , Estudos de Viabilidade , Humanos , Fenômenos Mecânicos , Mesencéfalo/citologia , Tamanho da Partícula , Ratos Sprague-Dawley , Propriedades de Superfície , Engenharia Tecidual
13.
Drug Discov Today ; 19(1): 88-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23962478

RESUMO

During a single decade of research, evidence has emerged that glial scar formation around the electro-tissue interface drives neural loss and increases the signal impedance of the electrodes, compromising the efficiency of the stimulating systems. Studies with conducting polymers (CPs) as electrode coatings have shown enhanced tissue integration and electrode performance in situ through biochemical and physicomechanical functionalisation. In this review, recent findings on CP modifications are provided in the context of neurospecific biomaterials, shedding light on the valuable impact of multifunctionalised strategies for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Cicatriz/prevenção & controle , Eletrodos Implantados , Neuroglia/fisiologia , Polímeros/química , Animais , Materiais Biocompatíveis/administração & dosagem , Cicatriz/patologia , Humanos , Neuroglia/patologia , Polímeros/administração & dosagem
14.
Biol Sex Differ ; 2: 11, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22060014

RESUMO

BACKGROUND: Chromosomal complement, including that provided by the sex chromosomes, influences expression of proteins and molecular signaling in every cell. However, less than 50% of the scientific studies published in 2009 using experimental animals reported sex as a biological variable. Because every cell has a sex, we conducted a literature review to determine the extent to which sex is reported as a variable in cardiovascular studies on cultured cells. METHODS: Articles from 10 cardiovascular journals with high impact factors (Circulation, J Am Coll Cardiol, Eur Heart J, Circ Res, Arterioscler Thromb Vasc Biol, Cardiovasc Res, J Mol Cell Cardiol, Am J Physiol Heart Circ Physiol, J Heart Lung Transplant and J Cardiovasc Pharmacol) and published in 2010 were searched using terms 'cultured' and 'cells' in any order to determine if the sex of those cells was reported. Studies using established cell lines were excluded. RESULTS: Using two separate search strategies, we found that only 25 of 90 articles (28%) and 20 of 101 articles (19.8%) reported the sex of cells. Of those reporting the sex of cells, most (68.9%; n = 31) used only male cells and none used exclusively female cells. In studies reporting the sex of cells of cardiovascular origin, 40% used vascular smooth-muscle cells, and 30% used stem/progenitor cells. In studies using cells of human origin, 35% did not report the sex of those cells. None of the studies using neonatal cardiac myocytes reported the sex of those cells. CONCLUSIONS: The complement of sex chromosomes in cells studied in culture has the potential to affect expression of proteins and 'mechanistic' signaling pathways. Therefore, consistent with scientific excellence, editorial policies should require reporting sex of cells used in in vitro experiments.

15.
CES med ; 21(2): 41-50, jul.-dic. 2007. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-561166

RESUMO

Este artículo presenta el desarrollo de un prototipo de dispositivo ortésico para cráneo de pacientes con plagiocefalia occipital posicional, con el fin de aplicarlo en la rehabilitación de infantes entre los cuatro y doce meses de edad. La geometría del dispositivo se obtuvo a partir de las medidas estadísticas estándar de cráneo para infantes de 6 meses de edad de acuerdo con La Academia Americana de Pediatría y por medio del software GID 8. Los esfuerzos y las deformaciones sufridas por el dispositivo durante su aplicación fueron simuladas por medio de elementos finitos usando el software ANSYS® 10.0. Para estandarizar el tratamiento y conocer la presión aplicada por el dispositivo ortésico en el cráneo del paciente, se elaboró un sensor de presión de aire que trabaja en un intervalo de 0 mm Hg a 55 mm Hg. Los resultados muestran que el dispositivo cumple las especificaciones tanto desde el punto de vista de una validación matemática, como desde las especificaciones del diseño en cuanto a la resolución mínima para las medidas de presión sensadas, confort y resistencia...


This paper presents the development of a prototype orthesis device for the cranium of patientswith positional occipital plagiocephaly. This device will allow the rehabilitation of infants between four months and twelve months old. The device geometry was obtained from statistical cranium measurements evaluated in children of 6 months old by the American Academy of Pediatrics as well through software called GID 8. The stress and strain results were taken from the device during activity, or while the equipment applied some forces on the head; simulations were made by the software of finite element called ANSYS® 10.0. An implementation of air sensor to the device made it possible to know the levels of pressure in a range of 0mm Hg a 55mm Hg. This implementation was done in order to get the standardization of the treatment. The mathematic results as well as the design specifications (minimum resolution of the pressure measurements, comfort and resistance) showed that the device maybe used in rehabilitation.


Assuntos
Recém-Nascido , Plagiocefalia não Sinostótica/terapia , Recém-Nascido , Reabilitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA