Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884786

RESUMO

The aggregation of α-synuclein is the hallmark of a collective of neurodegenerative disorders known as synucleinopathies. The tendency to aggregate of this protein, the toxicity of its aggregation intermediates and the ability of the cellular protein quality control system to clear these intermediates seems to be regulated, among other factors, by post-translational modifications (PTMs). Among these modifications, we consider herein proteolysis at both the N- and C-terminal regions of α-synuclein as a factor that could modulate disassembly of toxic amyloids by the human disaggregase, a combination of the chaperones Hsc70, DnaJB1 and Apg2. We find that, in contrast to aggregates of the protein lacking the N-terminus, which can be solubilized as efficiently as those of the WT protein, the deletion of the C-terminal domain, either in a recombinant context or as a consequence of calpain treatment, impaired Hsc70-mediated amyloid disassembly. Progressive removal of the negative charges at the C-terminal region induces lateral association of fibrils and type B* oligomers, precluding chaperone action. We propose that truncation-driven aggregate clumping impairs the mechanical action of chaperones, which includes fast protofilament unzipping coupled to depolymerization. Inhibition of the chaperone-mediated clearance of C-truncated species could explain their exacerbated toxicity and higher propensity to deposit found in vivo.


Assuntos
Amiloide/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Agregação Patológica de Proteínas/patologia , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , Calpaína/farmacologia , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Agregados Proteicos/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise
2.
J Biol Chem ; 294(44): 16385-16399, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530639

RESUMO

Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by malfunctions in primary cilia resulting from mutations that disrupt the function of the BBSome, an 8-subunit complex that plays an important role in protein transport in primary cilia. To better understand the molecular basis of BBS, here we used an integrative structural modeling approach consisting of EM and chemical cross-linking coupled with MS analyses, to analyze the structure of a BBSome 2-7-9 subcomplex consisting of three homologous BBS proteins, BBS2, BBS7, and BBS9. The resulting molecular model revealed an overall structure that resembles a flattened triangle. We found that within this structure, BBS2 and BBS7 form a tight dimer through a coiled-coil interaction and that BBS9 associates with the dimer via an interaction with the α-helical domain of BBS2. Interestingly, a BBS-associated mutation of BBS2 (R632P) is located in its α-helical domain at the interface between BBS2 and BBS9, and binding experiments indicated that this mutation disrupts the BBS2-BBS9 interaction. This finding suggests that BBSome assembly is disrupted by the R632P substitution, providing molecular insights that may explain the etiology of BBS in individuals harboring this mutation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Cílios/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Modelos Moleculares , Mutação
3.
Immunity ; 35(3): 375-87, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21903423

RESUMO

Although memory T cells respond more vigorously to stimulation and they are more sensitive to low doses of antigen than naive T cells, the molecular basis of this increased sensitivity remains unclear. We have previously shown that the T cell receptor (TCR) exists as different-sized oligomers on the surface of resting T cells and that large oligomers are preferentially activated in response to low antigen doses. Through biochemistry and electron microscopy, we now showed that previously stimulated and memory T cells have more and larger TCR oligomers at the cell surface than their naive counterparts. Reconstitution of cells and mice with a point mutant of the CD3ζ subunit, which impairs TCR oligomer formation, demonstrated that the increased size of TCR oligomers was directly responsible for the increased sensitivity of antigen-experienced T cells. Thus, we propose that an "avidity maturation" mechanism underlies T cell antigenic memory.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Oligodesoxirribonucleotídeos , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Complexo CD3/genética , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Receptores de Antígenos de Linfócitos T/genética
4.
Mol Microbiol ; 105(6): 869-879, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671286

RESUMO

Mycoplasma genitalium, the causative agent of non-gonococcal urethritis and pelvic inflammatory disease in humans, is a small eubacterium that lacks a peptidoglycan cell wall. On the surface of its plasma membrane is the major surface adhesion complex, known as NAP that is essential for adhesion and gliding motility of the organism. Here, we have performed cryo-electron tomography of intact cells and detergent permeabilized M. genitalium cell aggregates, providing sub-tomogram averages of free and cell-attached NAPs respectively, revealing a tetrameric complex with two-fold rotational (C2) symmetry. Each NAP has two pairs of globular lobes (named α and ß lobes), arranged as a dimer of heterodimers with each lobe connected by a stalk to the cell membrane. The ß lobes are larger than the α lobes by 20%. Classification of NAPs showed that the complex can tilt with respect to the cell membrane. A protein complex containing exclusively the proteins P140 and P110, was purified from M. genitalium and was structurally characterized by negative-stain single particle EM reconstruction. The close structural similarity found between intact NAPs and the isolated P140/P110 complexes, shows that dimers of P140/P110 heterodimers are the only components of the extracellular region of intact NAPs in M. genitalium.


Assuntos
Aderência Bacteriana/fisiologia , Mycoplasma genitalium/metabolismo , Aderência Bacteriana/genética , Mycoplasma/genética , Mycoplasma/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma genitalium/genética , Mycoplasma genitalium/ultraestrutura , Organelas , Uretrite/microbiologia
5.
Adv Exp Med Biol ; 1106: 119-131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484157

RESUMO

Molecular chaperones are key players in proteostasis, the balance between protein synthesis, folding, assembly and degradation. They are helped by a plethora of cofactors termed cochaperones, which direct chaperones towards any of these different, sometime opposite pathways. One of these is prefoldin (PFD), present in eukaryotes and in archaea, a heterohexamer whose best known role is the assistance to group II chaperonins (the Hsp60 chaperones found in archaea and the eukaryotic cytosolic) in the folding of proteins in the cytosol, in particular cytoskeletal proteins. However, over the last years it has become evident a more complex role for this cochaperone, as it can adopt different oligomeric structures, form complexes with other proteins and be involved in many other processes, both in the cytosol and in the nucleus, different from folding. This review intends to describe the structure and the many functions of this interesting macromolecular complex.


Assuntos
Chaperonas Moleculares/química , Dobramento de Proteína , Archaea , Células Eucarióticas
6.
Proc Natl Acad Sci U S A ; 112(8): 2413-8, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675501

RESUMO

G-protein signaling depends on the ability of the individual subunits of the G-protein heterotrimer to assemble into a functional complex. Formation of the G-protein ßγ (Gßγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings Gß and Gγ together. This system includes cytosolic chaperonin containing TCP-1 (CCT; also called TRiC) and its cochaperone phosducin-like protein 1 (PhLP1). Two key intermediates in the Gßγ assembly process, the Gß-CCT and the PhLP1-Gß-CCT complexes, were isolated and analyzed by a hybrid structural approach using cryo-electron microscopy, chemical cross-linking coupled with mass spectrometry, and unnatural amino acid cross-linking. The structures show that Gß interacts with CCT in a near-native state through interactions of the Gγ-binding region of Gß with the CCTγ subunit. PhLP1 binding stabilizes the Gß fold, disrupting interactions with CCT and releasing a PhLP1-Gß dimer for assembly with Gγ. This view provides unique insight into the interplay between CCT and a cochaperone to orchestrate the folding of a protein substrate.


Assuntos
Proteínas de Transporte/química , Chaperonina com TCP-1/química , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Proteínas do Tecido Nervoso/química , Multimerização Proteica , Aminoácidos/metabolismo , Animais , Benzofenonas , Proteínas de Transporte/ultraestrutura , Chaperonina com TCP-1/ultraestrutura , Reagentes de Ligações Cruzadas/metabolismo , Microscopia Crioeletrônica , Subunidades beta da Proteína de Ligação ao GTP/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/ultraestrutura , Humanos , Espectrometria de Massas , Modelos Moleculares , Proteínas do Tecido Nervoso/ultraestrutura , Fenilalanina/análogos & derivados , Estrutura Secundária de Proteína
7.
Int J Mol Sci ; 19(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126249

RESUMO

Prefoldin is a hexameric molecular chaperone found in the cytosol of archaea and eukaryotes. Its hexameric complex is built from two related classes of subunits, and has the appearance of a jellyfish: Its body consists of a double ß-barrel assembly with six long tentacle-like coiled coils protruding from it. Using the tentacles, prefoldin captures an unfolded protein substrate and transfers it to a group II chaperonin. Based on structural information from archaeal prefoldins, mechanisms of substrate recognition and prefoldin-chaperonin cooperation have been investigated. In contrast, the structure and mechanisms of eukaryotic prefoldins remain unknown. In this study, we succeeded in obtaining recombinant prefoldin from a thermophilic fungus, Chaetomium thermophilum (CtPFD). The recombinant CtPFD could not protect citrate synthase from thermal aggregation. However, CtPFD formed a complex with actin from chicken muscle and tubulin from porcine brain, suggesting substrate specificity. We succeeded in observing the complex formation of CtPFD and the group II chaperonin of C. thermophilum (CtCCT) by atomic force microscopy and electron microscopy. These interaction kinetics were analyzed by surface plasmon resonance using Biacore. Finally, we have shown the transfer of actin from CtPFD to CtCCT. The study of the folding pathway formed by CtPFD and CtCCT should provide important information on mechanisms of the eukaryotic prefoldin⁻chaperonin system.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Chaetomium/química , Chaetomium/genética , Galinhas , Clonagem Molecular , Cristalização , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Agregados Proteicos , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Suínos
8.
Nucleic Acids Res ; 43(7): 3643-52, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25800740

RESUMO

During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Transporte Biológico , Cinética
9.
Mol Cell ; 31(2): 232-43, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18550409

RESUMO

Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein's NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs.


Assuntos
Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSP110/química , Nucleotídeos/metabolismo , Animais , Bovinos , Clatrina/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Soluções
10.
Nucleic Acids Res ; 42(17): 11246-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25183523

RESUMO

Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand.


Assuntos
Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/química , Mitocôndrias/genética , Proteínas Mitocondriais/química , Fatores de Transcrição/química , Iniciação da Transcrição Genética , DNA/química , Proteínas Fúngicas/química , Mitocôndrias/enzimologia , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Elongação da Transcrição Genética , Leveduras/enzimologia
11.
Trends Biochem Sci ; 36(8): 424-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21723731

RESUMO

Chaperonins are ubiquitous chaperones found in Eubacteria, eukaryotic organelles (group I), Archaea and the eukaryotic cytosol (group II). They all share a common structure and a basic functional mechanism. Although a large amount of information has been gathered for the simpler group I, much less is known about group II chaperonins. Recent crystallographic and electron microscopy structures have provided new insights into the mechanism of these chaperonins and revealed important differences between group I and II chaperonins, mainly in the molecular rearrangements that take place during the functional cycle. These differences are evident for the most complex chaperonin, the eukaryotic cytosolic CCT, which highlights the uniqueness of this important molecular machine.


Assuntos
Chaperonina com TCP-1/química , Chaperoninas do Grupo I/química , Chaperoninas do Grupo II/química , Modelos Moleculares , Humanos , Conformação Proteica , Dobramento de Proteína
12.
J Biol Chem ; 289(7): 4490-502, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24375412

RESUMO

Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and ß-tubulin, a key CCT-folding substrate, and specifically inhibited ß-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of ß-tubulin folding. PDCD5 bound the apical domain of the CCTß subunit, projecting above the folding cavity without entering it. Like PDCD5, ß-tubulin also interacts with the CCTß apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and ß-tubulin suggest that PDCD5 sterically interferes with ß-tubulin binding to the CCTß apical domain and inhibits ß-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of ß-tubulin folding.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Chaperonina com TCP-1/metabolismo , Proteínas de Neoplasias/metabolismo , Dobramento de Proteína , Tubulina (Proteína)/metabolismo , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Chaperonina com TCP-1/genética , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tubulina (Proteína)/genética
13.
Proc Natl Acad Sci U S A ; 109(21): 8115-20, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22573817

RESUMO

Duplication of double-stranded DNA (dsDNA) requires a fine-tuned coordination between the DNA replication and unwinding reactions. Using optical tweezers, we probed the coupling dynamics between these two activities when they are simultaneously carried out by individual Phi29 DNA polymerase molecules replicating a dsDNA hairpin. We used the wild-type and an unwinding deficient polymerase variant and found that mechanical tension applied on the DNA and the DNA sequence modulate in different ways the replication, unwinding rates, and pause kinetics of each polymerase. However, incorporation of pause kinetics in a model to quantify the unwinding reaction reveals that both polymerases destabilize the fork with the same active mechanism and offers insights into the topological strategies that could be used by the Phi29 DNA polymerase and other DNA replication systems to couple unwinding and replication reactions.


Assuntos
Fagos Bacilares/genética , DNA Helicases/genética , Replicação do DNA/genética , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , DNA Helicases/metabolismo , DNA Viral/química , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Proteínas Motores Moleculares/fisiologia , Conformação de Ácido Nucleico , Estresse Mecânico , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
J Biol Chem ; 288(23): 16998-17007, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23632014

RESUMO

During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7.


Assuntos
Bacteriófago T7/química , DNA Viral/química , Endodesoxirribonucleases/química , Simulação de Acoplamento Molecular , Proteínas Virais/química , Bacteriófago T7/fisiologia , Bacteriófago T7/ultraestrutura , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Estrutura Quaternária de Proteína , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia
15.
J Biol Chem ; 288(36): 26290-26299, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23884409

RESUMO

Most bacterial viruses need a specialized machinery, called "tail," to inject their genomes inside the bacterial cytoplasm without disrupting the cellular integrity. Bacteriophage T7 is a well characterized member of the Podoviridae family infecting Escherichia coli, and it has a short noncontractile tail that assembles sequentially on the viral head after DNA packaging. The T7 tail is a complex of around 2.7 MDa composed of at least four proteins as follows: the connector (gene product 8, gp8), the tail tubular proteins gp11 and gp12, and the fibers (gp17). Using cryo-electron microscopy and single particle image reconstruction techniques, we have determined the precise topology of the tail proteins by comparing the structure of the T7 tail extracted from viruses and a complex formed by recombinant gp8, gp11, and gp12 proteins. Furthermore, the order of assembly of the structural components within the complex was deduced from interaction assays with cloned and purified tail proteins. The existence of common folds among similar tail proteins allowed us to obtain pseudo-atomic threaded models of gp8 (connector) and gp11 (gatekeeper) proteins, which were docked into the corresponding cryo-EM volumes of the tail complex. This pseudo-atomic model of the connector-gatekeeper interaction revealed the existence of a common molecular architecture among viruses belonging to the three tailed bacteriophage families, strongly suggesting that a common molecular mechanism has been favored during evolution to coordinate the transition between DNA packaging and tail assembly.


Assuntos
Bacteriófago T7/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Microscopia Crioeletrônica , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virologia , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Proteins ; 82(5): 703-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24420718

RESUMO

The eukaryotic cytosolic chaperonin CCT is a molecular machine involved in assisting the folding of proteins involved in important cellular processes. Like other chaperonins, CCT is formed by a double-ring structure but, unlike all of them, each ring is composed of eight different, albeit homologous subunits. This complexity has probably to do with the specificity in substrate interaction and with the mechanism of protein folding that takes place during the chaperonin functional cycle, but its detailed molecular basis remains unknown. We have analyzed the known proteomes in search of residues that are differentially conserved in the eight subunits, as predictors of functional specificity (specificity-determining positions; SDPs). We have found that most of these SDPs are located near the ATP binding site, and that they define four CCT clusters, corresponding to subunits CCT3, CCT6, CCT8 and CCT1/2/4/5/7. Our results point to a spatial organisation of the CCT subunits in two opposite areas of the ring and provide a molecular explanation for the previously described asymmetry in the hydrolysis of ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina com TCP-1/metabolismo , Modelos Moleculares , Chaperonina com TCP-1/química , Sequência Conservada , Bases de Dados de Proteínas , Hidrólise , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
17.
J Biol Chem ; 287(47): 39925-32, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035111

RESUMO

VirB4 proteins are ATPases essential for pilus biogenesis and protein transport in type IV secretion systems. These proteins contain a motor domain that shares structural similarities with the motor domains of DNA translocases, such as the VirD4/TrwB conjugative coupling proteins and the chromosome segregation pump FtsK. Here, we report the three-dimensional structure of full-length TrwK, the VirB4 homologue in the conjugative plasmid R388, determined by single-particle electron microscopy. The structure consists of a hexameric double ring with a barrel-shaped structure. The C-terminal half of VirB4 proteins shares a striking structural similarity with the DNA translocase TrwB. Docking the atomic coordinates of the crystal structures of TrwB and FtsK into the EM map revealed a better fit for FtsK. Interestingly, we have found that like TrwB, TrwK is able to bind DNA with a higher affinity for G4 quadruplex structures than for single-stranded DNA. Furthermore, TrwK exerts a dominant negative effect on the ATPase activity of TrwB, which reflects an interaction between the two proteins. Our studies provide new insights into the structure-function relationship and the evolution of these DNA and protein translocases.


Assuntos
Adenosina Trifosfatases/química , Agrobacterium tumefaciens/enzimologia , Proteínas de Bactérias/química , Proteínas de Transporte/química , DNA de Cadeia Simples/química , Simulação de Acoplamento Molecular , Filogenia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
18.
J Am Chem Soc ; 135(1): 122-31, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23214411

RESUMO

Double-stranded (ds) RNA is the genetic material of a variety of viruses and has been recently recognized as a relevant molecule in cells for its regulatory role. Despite that the elastic response of dsDNA has been thoroughly characterized in recent years in single-molecule stretching experiments, an equivalent study with dsRNA is still lacking. Here, we have engineered long dsRNA molecules for their individual characterization contrasting information with dsDNA molecules of the same sequence. It is known that dsRNA is an A-form molecule unlike dsDNA, which exhibits B-form in physiological conditions. These structural types are distinguished at the single-molecule level with atomic force microscopy (AFM) and are the basis to understand their different elastic response. Force-extension curves of dsRNA with optical and magnetic tweezers manifest two main regimes of elasticity, an entropic regime whose end is marked by the A-form contour-length and an intrinsic regime that ends in a low-cooperative overstretching transition in which the molecule extends to 1.7 times its A-form contour-length. DsRNA does not switch between the A and B conformations in the presence of force. Finally, dsRNA presents both a lower stretch modulus and overstretching transition force than dsDNA, whereas the electrostatic and intrinsic contributions to the persistence length are larger.


Assuntos
DNA/química , RNA/química , Microscopia de Força Atômica
19.
J Extracell Vesicles ; 12(6): e12333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37328936

RESUMO

Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.


Assuntos
Vesículas Extracelulares , Cinesinas , Cinesinas/metabolismo , Chaperonina com TCP-1/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo dos Lipídeos , Lipídeos
20.
J Struct Biol ; 178(1): 54-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22420976

RESUMO

Microcin E492 is a low-molecular weight, channel-forming bacteriotoxin that generates amyloid structures. Using electron microscopy and image processing techniques several structural conformations can be observed. Prior to the conditions that induce amyloid formation and at its initial stage, microcin E492 molecules can be found in two main types of oligomers: a pentameric, pore-like structure consisting of globular monomers of ∼25Å diameter, and long filaments made up of stacked pentamers. The equilibrium between these structures depends on the properties of the solvent, because samples kept in methanol mainly show the pentameric structure. Amyloid induction in aqueous solvent reveals the presence, together with the above mentioned structures, of several amyloid structures such as flat and helical filaments. In addition, X-ray diffraction analysis demonstrated that the fibrils formed by microcin E492 presented cross-ß structure, a distinctive property of amyloid fibrils. Based on the study of the observed structures we propose that microcin E492 has two conformations: a native one that assembles mainly into a pentameric structure, which functions as a pore, and an amyloid conformation which results in the formation of different types of amyloid filaments.


Assuntos
Amiloide , Bacteriocinas/química , Amiloide/biossíntese , Amiloide/química , Amiloide/ultraestrutura , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Microscopia Eletrônica , Conformação Proteica , Estrutura Terciária de Proteína , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA