Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 759, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820813

RESUMO

BACKGROUND: Circulating cell free DNA (cfDNA) testing of plasma for EGFR somatic variants in lung cancer patients is being widely implemented and with any new service, external quality assessment (EQA) is required to ensure patient safety. An international consortium, International Quality Network for Pathology (IQNPath), has delivered a second round of assessment to measure the accuracy of cfDNA testing for lung cancer and the interpretation of the results. METHODS: A collaboration of five EQA provider organisations, all members of IQNPath, have delivered the assessment during 2018-19 to a total of 264 laboratories from 45 countries. Bespoke plasma reference material containing a range of EGFR mutations at varying allelic frequencies were supplied to laboratories for testing and reporting according to routine procedures. The genotyping accuracy and clinical reporting was reviewed against standardised criteria and feedback was provided to participants. RESULTS: The overall genotyping error rate in the EQA was found to be 11.1%. Low allelic frequency samples were the most challenging and were not detected by some testing methods, resulting in critical genotyping errors. This was reflected in higher false negative rates for samples with variant allele frequencies (VAF) rates less than 1.5% compared to higher frequencies. A sample with two different EGFR mutations gave inconsistent detection of both mutations. However, for one sample, where two variants were present at a VAF of less than 1% then both mutations were correctly detected in 145/263 laboratories. Reports often did not address the risk that tumour DNA may have not been tested and limitations of the methodologies provided by participants were insufficient. This was reflected in the average interpretation score for the EQA being 1.49 out of a maximum of 2. CONCLUSIONS: The variability in the standard of genotyping and reporting highlighted the need for EQA and educational guidance in this field to ensure the delivery of high-quality clinical services where testing of cfDNA is the only option for clinical management.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Receptores ErbB/genética , Frequência do Gene , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação
2.
BMC Cancer ; 22(1): 736, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794532

RESUMO

BACKGROUND: For patients with non-small cell lung cancer (NSCLC), targeted therapies are becoming part of the standard treatment. It is of question which information the clinicians provide on test requests and how the laboratories adapt test conclusions to this knowledge and regulations. METHODS: This study consisted of two components; 1) checking the presence of pre-defined elements (administrative and key for therapy-choice) on completed requests and corresponding reports in Belgian laboratories, both for tissue- and liquid biopsy (LB)-testing and b) opinion analysis from Belgian pathologists/molecular biologists and clinicians during national pathology/oncology meetings. RESULTS: Data from 4 out of 6 Belgian laboratories with ISO-accreditation for LB-testing were analyzed, of which 75% were university hospitals. On the scored requests (N = 4), 12 out of 19 ISO-required elements were present for tissue and 11 for LB-testing. Especially relevant patient history, such as line of therapy (for LB), tumor histology and the reason for testing were lacking. Similarly, 11 and 9 out of 18 elements were present in the reports (N = 4) for tissue and LB, respectively. Elements that pathologists/molecular biologists (N = 18) were missing on the request were the initial activating mutation, previous therapies, a clinical question and testing-related information. For reporting, an item considered important by both groups is the clinical interpretation of the test result. In addition, clinicians (N = 28) indicated that they also wish to read the percentage of neoplastic cells. CONCLUSIONS: Communication flows between the laboratory and the clinician, together with possible pitfalls were identified. Based on the study results, templates for complete requesting and reporting were proposed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Biópsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Técnicas de Diagnóstico Molecular , Patologia Molecular
3.
BMC Cancer ; 20(1): 366, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357863

RESUMO

BACKGROUND: Correct identification of the EGFR c.2369C>T p.(Thr790Met) variant is key to decide on a targeted therapeutic strategy for patients with acquired EGFR TKI resistance in non-small cell lung cancer. The aim of this study was to evaluate the correct detection of this variant in 12 tumor tissue specimens tested by 324 laboratories participating in External Quality Assessment (EQA) schemes. METHODS: Data from EQA schemes were evaluated between 2013 and 2018 from cell lines (6) and resections (6) containing the EGFR c.2369C>T p.(Thr790Met) mutation. Adequate performance was defined as the percentage of tests for which an outcome was available and correct. Additional data on the used test method were collected from the participants. Chi-squared tests on contingency tables and a biserial rank correlation were applied by IBM SPSS Statistics version 25 (IBM, Armonk, NY, USA). RESULTS: In 26 of the 1190 tests (2.2%) a technical failure occurred. For the remaining 1164 results, 1008 (86.6%) were correct, 151 (12.9%) were false-negative and 5 (0.4%) included incorrect mutations. Correct p.(Thr790Met) detection improved over time and for repeated scheme participations. In-house non-next-generation sequencing (NGS) techniques performed worse (81.1%, n = 293) compared to non-NGS commercial kits (85.2%, n = 656) and NGS (97.0%, n = 239). Over time there was an increase in the users of NGS. Resection specimens performed worse (82.6%, n = 610 tests) compared to cell line material (90.9%, n = 578 tests), except for NGS (96.3%, n = 344 for resections and 98.6%, n = 312 for cell lines). Samples with multiple mutations were more difficult compared to samples with the single p.(Thr790Met) variant. A change of the test method was shown beneficial to reduce errors but introduced additional analysis failures. CONCLUSIONS: A significant number of laboratories that offer p.(Thr790Met) testing did not detect this relevant mutation compared to the other EQA participants. However, correct identification of this variant is improving over time and was higher for NGS users. Revising the methodology might be useful to resolve errors, especially for resection specimens with low frequency or multiple variants. EQA providers should include challenging resections in the scheme.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Receptores ErbB/genética , Seguimentos , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos , Estudos Longitudinais , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/enzimologia , Polimorfismo de Nucleotídeo Único , Controle de Qualidade , Células Tumorais Cultivadas
4.
J Mol Diagn ; 22(6): 736-747, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32205291

RESUMO

Liquid biopsies have emerged as a useful addition to tissue biopsies in molecular pathology. Literature has shown lower laboratory performances when a new method of variant analysis is introduced. This study evaluated the differences in variant analysis between tissue and plasma samples after the introduction of liquid biopsy in molecular analysis. Data from a pilot external quality assessment scheme for the detection of molecular variants in plasma samples and from external quality assessment schemes for the detection of molecular variants in tissue samples were collected. Laboratory performance and error rates by sample were compared between matrices for variants present in both scheme types. Results showed lower overall performance [65.6% (n = 276) versus 89.2% (n = 1607)] and higher error rates [21.0% to 43.5% (n = 138) versus 8.7% to 16.7% (n = 234 to 689)] for the detection of variants in plasma compared to tissue, respectively. In the plasma samples, performance was decreased for variants with an allele frequency of 1% compared to 5% [56.5% (n = 138) versus 74.6% (n = 138)]. The implementation of liquid biopsy in the detection of circulating tumor DNA in plasma was associated with poor laboratory performance. It is important both to apply optimal detection methods and to extensively validate new methods for testing circulating tumor DNA before treatment decisions are made.


Assuntos
DNA Tumoral Circulante/sangue , Fixadores/farmacologia , Formaldeído/farmacologia , Neoplasias/sangue , Neoplasias/diagnóstico , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , Frequência do Gene , Humanos , Biópsia Líquida , Oncologia/métodos , Mutação , Neoplasias/patologia , Dados Preliminares
5.
PLoS One ; 15(4): e0231058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32251424

RESUMO

Although liquid biopsies offer many advantages over tissue biopsies, they are not yet standard practice. An important reason for the lack of implementation is the unavailability of well standardized techniques and guidelines, especially for pre-analytical conditions which are an important factor causing the current sensitivity issues. To overcome these limitations, we investigated the effect of several pre-analytical conditions on the concentration of cell-free DNA (cfDNA) and cellular genomic DNA (gDNA) contamination. Urine samples from healthy volunteers (HVs) and cancer patients were collected and processed according to specific pre-analytical conditions. Our results show that in samples with a relatively small volume more than 50% of the cfDNA can be found in the first 50 mL of the urine sample. The total DNA concentration increased again when samples were collected more than 3.5 hours apart. Adding preservative to urine samples is recommended to obtain high concentrations of cfDNA. To remove the cellular content, high speed centrifugation protocols as 4,000g 10min or 3,000g 15min are ideal for urine collected in cfDNA Urine Preserve (Streck). Although this study was a pilot study and needs to be confirmed in a larger study population, clear trends in the effect of several pre-analytical conditions were observed.


Assuntos
Ácidos Nucleicos Livres/urina , Testes Diagnósticos de Rotina/normas , Neoplasias/urina , Urinálise/normas , Coleta de Urina/normas , Adulto , Idoso , Centrifugação/métodos , Feminino , Voluntários Saudáveis , Humanos , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Projetos Piloto , Temperatura , Fatores de Tempo , Coleta de Urina/métodos , Adulto Jovem
6.
Mol Diagn Ther ; 24(1): 113-124, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838654

RESUMO

INTRODUCTION: The potential of circulating cell-free DNA (cfDNA) analysis as a liquid biopsy has led to the development of several specialized measuring tools. Interest in the (pre-)analytical conditions of the liquid biopsy workflow has increased over the past few years. METHODS: In this study, we performed a systematic review of the cfDNA stabilizing efficacy in standard EDTA and specialized blood collection tubes (BCTs), namely CellSave, Norgen, PAXgene, Roche, and Streck tubes, and compared the efficacy of the latter three BCTs in a situation resembling the clinical setting. Blood samples were collected from ten KRAS-mutated metastatic cancer patients and stored for 72 h. During this time, samples were shaken and kept at either 6 °C or at room temperature for 24 h to mimic transport. RESULTS: We demonstrated that while cfDNA levels in EDTA tubes are only stable for a couple of (≤ 6) hours, they could be sustained for at least 48-72 h in all three specialized BCTs, irrespective of temperature. This timespan enables a fast turnaround time, which is one of the advantages of liquid biopsy. CONCLUSIONS: The choice between these specialized BCTs is less vital when they are processed correctly within a few days.


Assuntos
Biomarcadores Tumorais , Biópsia Líquida/métodos , Neoplasias/sangue , Neoplasias/diagnóstico , Coleta de Amostras Sanguíneas , Ácidos Nucleicos Livres/sangue , Humanos
7.
Cancers (Basel) ; 11(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935089

RESUMO

The combined analysis of circulating cell-free (tumor) DNA (cfDNA/ctDNA) and circulating cell-free (tumor) RNA (cfRNA/ctRNA) shows great promise in determining the molecular profile of cancer patients. Optimization of the workflow is necessary to achieve consistent and reproducible results. In this study, we compared five centrifugation protocols for the optimal yield of both cfDNA/ctDNA and cfRNA/ctRNA. These protocols varied in centrifugation speed, ambient temperature, time, and number of centrifugation steps. Samples from 33 participants were collected in either BD Vacutainer K2EDTA (EDTA) tubes or cell-free DNA BCT® (Streck) tubes. cfDNA concentration and fragment size, and cfRNA concentration were quantitated in all samples by digital droplet PCR (ddPCR) and quantitative PCR (qPCR). The KRAS-mutated ctDNA and ctRNA fraction was determined via ddPCR. In EDTA tubes, the protocol generating both plasma and platelets was found to produce high quality cfDNA and cfRNA concentrations. Two-step, high-speed centrifugation protocols were associated with high cfDNA but low cfRNA concentrations. High cfRNA concentrations were generated by a one-step, low-speed protocol. However, this coincided with a high amount of genomic DNA (gDNA) contamination. In Streck tubes, two-step, high-speed centrifugation protocols also generated good quality, high cfDNA concentration. However, these tubes are not compatible with cfRNA analysis.

8.
Cancers (Basel) ; 10(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150518

RESUMO

A multicenter study was performed to determine an optimal workflow for liquid biopsy in a clinical setting. In total, 549 plasma samples from 234 non-small cell lung cancer (NSCLC) patients were collected. Epidermal Growth Factor Receptor (EGFR) circulating cell-free tumor DNA (ctDNA) mutational analysis was performed using digital droplet PCR (ddPCR). The influence of (pre-) analytical variables on ctDNA analysis was investigated. Sensitivity of ctDNA analysis was influenced by an interplay between increased plasma volume (p < 0.001) and short transit time (p = 0.018). Multistep, high-speed centrifugation both increased plasma generation (p < 0.001) and reduced genomic DNA (gDNA) contamination. Longer transit time increased the risk of hemolysis (p < 0.001) and low temperatures were shown to have a negative effect. Metastatic sites were found to be strongly associated with ctDNA detection (p < 0.001), as well as allele frequency (p = 0.034). Activating mutations were detected in a higher concentration and allele frequency compared to the T790M mutation (p = 0.003, and p = 0.002, respectively). Optimization of (pre-) analytical variables is key to successful ctDNA analysis. Sufficient plasma volumes without hemolysis or gDNA contamination can be achieved by using multistep, high-speed centrifugation, coupled with short transit time and temperature regulation. Metastatic site location influenced ctDNA detection. Finally, ctDNA levels might have further value in detecting resistance mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA