RESUMO
PURPOSE: Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. METHODS: Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. RESULTS: NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. CONCLUSION: While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.
Assuntos
Neoplasias da Mama , Quinases Relacionadas a NIMA , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Quinases Relacionadas a NIMA/genética , Fenótipo , RNA Interferente PequenoRESUMO
AIMS AND OBJECTIVE: 1-Alkynes are the important precursors for the CuAAC click chemistry. The hybrid of 1,2,3-triazole ring to the chromene ring and sugar moiety could bring some remarkable biological properties. Propargyl derivatives are usually used in the click chemistry. This article reported the synthesis of 2-amino-4-aryl-7-propargyloxy-4-aryl-4H-chromene-3-carbonitriles using propargyl bromide as alkylation agent and the use of potassium carbonate and sodium hydride as bases in the conversion of 2-amino-4-aryl-7- hydroxy-4-aryl-4H-chromene-3-carbonitriles into corresponding propargyl ethers in Williamson's ether synthesis. MATERIALS AND METHODS: The use of CTAB for the synthesis of benzylidene malononitriles and anhydrous potassium carbonate as a catalyst in absolute ethanol in the synthesis of 2-amino-7-hydroxy-4H-chromene-3- carbonitriles is an efficient and simple synthetic method. Propargyl ether compounds of these 4H-chromene-3- carbonitriles were obtained from the alkylation reaction by propargyl bromide. Two procedures were applied: K2CO3 as a base in acetone solvent (Procedure A) and NaH as a base in DMF solvent (Procedure B). The single-crystal X-ray structure of propargyl ether 5e has been studied. RESULTS: The use of K2CO3 and NaH as bases in the Williamson's ether synthesis from 2-amino-7-hydroxy-4Hchromene- 3-carbonitriles showed that Procedure B was the better route and gave ethers in the higher yields. 2- Amino-4-aryl-7-propargyloxy-4-aryl-4H-chromene-3-carbonitriles were obtained from corresponding 7- hydroxy-4H-chromene-3-carbonitriles. Yields of ethers 5a-i were 70-89% and 80-96%, respectively depending on the used procedures. CONCLUSION: The described methods are simple, clean and environmentally friendly alternatives for the preparation of 2-amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitriles. The conditions for the transformation of these compounds into propargyl ethers include dried DMF as a solvent, NaH as a base and reaction time of 2 h at the room temperature. A series of 2-amino-4-aryl-7-hydroxy-4-aryl-4H-chromene-3-carbonitriles were obtained based on investigated reaction condition.