Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 199(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808128

RESUMO

The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts.IMPORTANCEXylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen.


Assuntos
Conjugação Genética , Transferência Genética Horizontal , Genes Bacterianos , Óperon , Plasmídeos , Xylella/genética , Sistemas de Secreção Tipo IV/genética
2.
Pest Manag Sci ; 76(1): 150-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31087487

RESUMO

BACKGROUND: We previously identified a glyphosate-resistant A. trifida phenotype from Wisconsin USA that showed a non-rapid response to glyphosate. The mechanism of glyphosate resistance in this phenotype has yet to be elucidated. We conducted experiments to investigate non-target-site resistance and target-site resistance mechanisms. The roles of glyphosate absorption, translocation, and metabolism in resistance of this phenotype have not been reported previously, nor have EPSPS protein abundance or mutations to the full-length sequence of EPSPS. RESULTS: Whole-plant dose-response results confirmed a 6.5-level of glyphosate resistance for the resistant (R) phenotype compared to a susceptible (S) phenotype. Absorption and translocation of 14 C-glyphosate were similar between R and S phenotypes over 72 h. Glyphosate and AMPA concentrations in leaf tissue did not differ between R and S phenotypes over 96 h. In vivo shikimate leaf disc assays confirmed that glyphosate EC50 values were 4.6- to 5.4-fold greater for the R than S phenotype. Shikimate accumulation was similar between phenotypes at high glyphosate concentrations (>1000 µM), suggesting that glyphosate entered chloroplasts and inhibited EPSPS. This finding was supported by results showing that EPSPS copy number and EPSPS protein abundance did not differ between R and S phenotypes, nor did EPSPS sequence at Gly101, Thr102, and Pro106 positions. Comparison of full-length EPSPS sequences found five nonsynonymous polymorphisms that differed between R and S phenotypes. However, their locations were distant from the glyphosate target site and, therefore, not likely to affect enzyme-glyphosate interaction. CONCLUSION: The results suggest that a novel mechanism confers glyphosate resistance in this A. trifida phenotype. © 2019 Society of Chemical Industry.


Assuntos
Ambrosia , 3-Fosfoshikimato 1-Carboxiviniltransferase , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas , Wisconsin , Glifosato
3.
Pest Manag Sci ; 74(5): 1071-1078, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28266132

RESUMO

BACKGROUND: Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. RESULTS: Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. CONCLUSION: These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry.


Assuntos
Ambrosia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Ambrosia/genética , Ambrosia/fisiologia , Glicina/farmacologia , Meio-Oeste dos Estados Unidos , Ontário , Plantas Daninhas/fisiologia , Tennessee , Glifosato
4.
Pest Manag Sci ; 74(5): 1079-1088, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28276187

RESUMO

BACKGROUND: The glyphosate-resistant rapid response (GR RR) resistance mechanism in Ambrosia trifida is not due to target-site resistance (TSR) mechanisms. This study explores the physiology of the rapid response and the possibility of reduced translocation and vacuolar sequestration as non-target-site resistance (NTSR) mechanisms. RESULTS: GR RR leaf discs accumulated hydrogen peroxide within minutes of glyphosate exposure, but only in mature leaf tissue. The rapid response required energy either as light or exogenous sucrose. The combination of phenylalanine and tyrosine inhibited the rapid response in a dose-dependent manner. Reduced glyphosate translocation was observed in GR RR, but only when associated with tissue death caused by the rapid response. Nuclear magnetic resonance studies indicated that glyphosate enters the cytoplasm and reaches chloroplasts, and it is not moved into the vacuole of GR RR, GR non-rapid response or glyphosate-susceptible A. trifida. CONCLUSION: The GR RR mechanism of resistance is not associated with vacuole sequestration of glyphosate, and the observed reduced translocation is likely a consequence of rapid tissue death. Rapid cell death was inhibited by exogenous application of aromatic amino acids phenylalanine and tyrosine. The mechanism by which these amino acids inhibit rapid cell death in the GR RR phenotype remains unknown, and it could involve glyphosate phytotoxicity or other agents generating reactive oxygen species. Implications of these findings are discussed. The GR RR mechanism is distinct from the currently described glyphosate TSR or NTSR mechanisms in other species. © 2017 Society of Chemical Industry.


Assuntos
Ambrosia/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Ambrosia/metabolismo , Cloroplastos/metabolismo , Glicina/metabolismo , Folhas de Planta/metabolismo , Plantas Daninhas/metabolismo , Vacúolos/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA