Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Semin Cell Dev Biol ; 156: 176-189, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268555

RESUMO

In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Condensados Biomoleculares , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Mutação/genética , RNA
2.
Hum Mol Genet ; 32(2): 319-332, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994036

RESUMO

Responding effectively to external stress is crucial for neurons. Defective stress granule dynamics has been hypothesized as one of the pathways that renders motor neurons in amyotrophic lateral sclerosis (ALS) more prone to early death. Specifically, it is thought that stress granules seed the cytoplasmic TDP-43 inclusions that are observed in the neurons of most ALS patients, as well as ~50% of all frontotemporal dementia (FTD) patients. In this study, we tested this hypothesis in an intact mammalian nervous system. We established an in vivo heat stress paradigm in mice that effectively triggers the eIF2α pathway and the formation of stress granules in the CNS. In non-transgenic mice, we report an age-dependent decline in the formation of heat-induced stress granules, with 18-month-old animals showing a significant impairment. Furthermore, although neuronal stress granules were robustly observed in non-transgenic mice and SOD1G93A mice, they were largely absent in age-matched TDP-43M337V animals. The observed defect in stress granule formation in TDP-43M337V mice correlated with deficits in expression of key protein components typically required for phase separation. Lastly, while TDP-43 was not localized to stress granules, we observed complete nuclear depletion of TDP-43 in a subset of neurons, with the highest proportion being in the TDP-43M337V mice. Overall, our results indicate that mutant TDP-43 expression is associated with defective stress granule assembly and increased TDP-43 nuclear depletion in the mammalian nervous system, which could be relevant to ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Camundongos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/patologia , Grânulos de Estresse , Neurônios Motores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo
3.
Brain ; 147(1): 147-162, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37640028

RESUMO

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos/metabolismo , Molécula de Adesão de Leucócito Ativado/metabolismo , Adesão Celular , Oligodendroglia/metabolismo
4.
Brain ; 144(11): 3461-3476, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34115105

RESUMO

TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. Ras-GAP SH3-domain-binding protein 1 (G3BP1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3' untranslated region. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data indicate that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Esclerose Lateral Amiotrófica/patologia , Células Cultivadas , Demência Frontotemporal/patologia , Humanos , Neurônios/patologia , RNA Mensageiro
5.
J Proteome Res ; 20(6): 3165-3178, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33939924

RESUMO

Cytoplasmic stress granules (SGs) are dynamic foci containing translationally arrested mRNA and RNA-binding proteins (RBPs) that form in response to a variety of cellular stressors. It has been debated that SGs may evolve into cytoplasmic inclusions observed in many neurodegenerative diseases. Recent studies have examined the SG proteome by interrogating the interactome of G3BP1. However, it is widely accepted that multiple baits are required to capture the full SG proteome. To gain further insight into the SG proteome, we employed immunoprecipitation coupled with mass spectrometry of endogenous Caprin-1, an RBP implicated in mRNP granules. Overall, we identified 1543 proteins that interact with Caprin-1. Interactors under stressed conditions were primarily annotated to the ribosome, spliceosome, and RNA transport pathways. We validated four Caprin-1 interactors that localized to arsenite-induced SGs: ANKHD1, TALIN-1, GEMIN5, and SNRNP200. We also validated these stress-induced interactions in SH-SY5Y cells and further determined that SNRNP200 also associated with osmotic- and thermal-induced SGs. Finally, we identified SNRNP200 in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) spinal cord and motor cortex. Collectively, our findings provide the first description of the Caprin-1 protein interactome, identify novel cytoplasmic SG components, and reveal a SG protein in cytoplasmic aggregates in ALS patient neurons. Proteomic data collected in this study are available via ProteomeXchange with identifier PXD023271.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Proteômica , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/genética
6.
J Biol Chem ; 295(12): 3808-3825, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029478

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anticorpos/imunologia , Linhagem Celular , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Agregados Proteicos , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Transgênicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/imunologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
7.
J Neurochem ; 157(4): 944-962, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33349931

RESUMO

Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.


Assuntos
DNA Helicases/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Humanos
8.
Brain ; 141(5): 1320-1333, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562314

RESUMO

See Fratta and Isaacs (doi:10.1093/brain/awy091) for a scientific commentary on this article.The RNA binding proteins TDP-43 (encoded by TARDBP) and hnRNP A1 (HNRNPA1) are each mutated in certain amyotrophic lateral sclerosis cases and are often mislocalized in cytoplasmic aggregates within motor neurons of affected patients. Cytoplasmic inclusions of TDP-43, which are accompanied by a depletion of nuclear TDP-43, are observed in most amyotrophic lateral sclerosis cases and nearly half of frontotemporal dementia cases. Here, we report that TDP-43 binds HNRNPA1 pre-mRNA and modulates its splicing, and that depletion of nuclear TDP-43 results in increased inclusion of a cassette exon in the HNRNPA1 transcript, and consequently elevated protein levels of an isoform containing an elongated prion-like domain, referred to as hnRNP A1B. Combined in vivo and in vitro approaches demonstrated greater fibrillization propensity for hnRNP A1B, which drives protein aggregation and is toxic to cells. Moreover, amyotrophic lateral sclerosis patients with documented TDP-43 pathology showed neuronal hnRNP A1B cytoplasmic accumulation, indicating that TDP-43 mislocalization may contribute to neuronal vulnerability and loss via altered HNRNPA1 pre-mRNA splicing and function. Given that TDP-43 and hnRNP A1 each bind, and thus modulate, a third of the transcriptome, our data suggest a much broader disruption in RNA metabolism than previously considered.


Assuntos
Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Agregação Patológica de Proteínas/metabolismo , Processamento Alternativo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Dactinomicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Imunoprecipitação , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Mutação/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Sítios de Splice de RNA/efeitos dos fármacos , Sítios de Splice de RNA/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Medula Espinal/patologia , Transfecção
9.
Adv Exp Med Biol ; 1203: 195-245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811636

RESUMO

In recent years, cytoplasmic RNA granules, which are micron-sized membrane-less entities formed by phase separation, have progressively gained recognition as essential constituents of neuronal RNA metabolism. Stress granules form under adverse growth conditions in order to protect nontranslating mRNA, shift translation toward the production of prosurvival factors, as well as potentially serve as hubs for intracellular signaling. In contrast, processing bodies play a role in RNA degradation in both stressed and homeostatic conditions. Lastly, transport granules permit, as their name indicates, the transport of mRNA within neurons. All of these granule subtypes are required for proper neuronal function; thus, impairments in their regulation and/or composition are expected to be deleterious. Here, we review these cytoplasmic RNA granule subtypes and discuss how they have been implicated in some neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , RNA Mensageiro , Grânulos Citoplasmáticos/metabolismo , Humanos , Doenças Neurodegenerativas/fisiopatologia , RNA Mensageiro/metabolismo
10.
J Neurosci ; 36(21): 5785-98, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225768

RESUMO

UNLABELLED: Glaucoma, the leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). Ocular hypertension is the most significant known risk factor for developing the disease, but the mechanism by which elevated pressure damages RGCs is currently unknown. The axonal-enriched microtubule-associated protein tau is a key mediator of neurotoxicity in Alzheimer's disease and other tauopathies. Using a well characterized in vivo rat glaucoma model, we show an age-related increase in endogenous retinal tau that was markedly exacerbated by ocular hypertension. Early alterations in tau phosphorylation, characterized by epitope-dependent hyperphosphorylation and hypophosphorylation, correlated with the appearance of tau oligomers in glaucomatous retinas. Our data demonstrate the mislocalization of tau in the somatodendritic compartment of RGCs subjected to high intraocular pressure. In contrast, tau was depleted from RGC axons in the optic nerve of glaucomatous eyes. Importantly, intraocular administration of short interfering RNA against tau effectively reduced retinal tau accumulation and promoted robust survival of RGC somas and axons, supporting a critical role for tau alterations in ocular hypertension-induced neuronal damage. Our study reveals that glaucoma displays signature pathological features of tauopathies, including tau accumulation, altered phosphorylation, and missorting; and identifies tau as a novel target to counter RGC neurodegeneration in glaucoma and prevalent optic neuropathies. SIGNIFICANCE STATEMENT: In this study, we investigated the role of tau in retinal ganglion cell (RGC) damage in glaucoma. We demonstrate that high intraocular pressure leads to a rapid increase in endogenous retinal tau with altered phosphorylation profile and the formation of tau oligomers. Tau accumulation was primarily observed in RGC dendrites, while tau in RGC axons within the optic nerve was depleted. Attenuation of endogenous retinal tau using a targeted siRNA led to striking protection of RGC somas and axons from hypertension-induced damage. Our study identifies novel and substantial alterations of endogenous tau protein in glaucoma, including abnormal subcellular distribution, an altered phosphorylation profile, and neurotoxicity.


Assuntos
Glaucoma/metabolismo , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Glaucoma/patologia , Pressão Intraocular , Masculino , Fosforilação , Transporte Proteico , Ratos , Degeneração Retiniana/patologia , Tauopatias/patologia
11.
J Physiol ; 595(3): 647-661, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633977

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disease leading to the death of motor neurons (MNs). It is also recognized as a non-cell autonomous disease where glial cells in the CNS are involved in its pathogenesis and progression. However, although denervation of neuromuscular junctions (NMJs) represents an early and major event in ALS, the importance of glial cells at this synapse receives little attention. An interesting possibility is that altered relationships between glial cells and MNs in the spinal cord in ALS may also take place at the NMJ. Perisynaptic Schwann cells (PSCs), which are glial cells at the NMJ, show great morphological and functional adaptability to ensure NMJ stability, maintenance and repair. More specifically, PSCs change their properties according to the state of innervation. Hence, abnormal changes or lack of changes can have detrimental effects on NMJs in ALS. This review will provide an overview of known and hypothesized interactions between MN nerve terminals and PSCs at NMJs during development, aging and ALS-induced denervation. These neuron-PSC interactions may be crucial to the understanding of how degenerative changes begin and progress at NMJs in ALS, and represent a novel therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Neuroglia/fisiologia , Junção Neuromuscular/fisiologia , Animais , Humanos , Neurônios Motores/fisiologia
12.
J Med Genet ; 52(5): 303-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25650066

RESUMO

BACKGROUND: The heterogeneous group of 3-methylglutaconic aciduria disorders includes several inborn errors of metabolism that affect mitochondrial function through poorly understood mechanisms. We describe four newborn siblings, from a consanguineous family, who showed microcephaly, small birth weight, severe encephalopathy and 3-methylglutaconic aciduria. Their neurological examination was characterised by severe hypertonia and the induction of prolonged clonic movements of the four limbs upon minimal tactile stimulation. METHODS AND RESULTS: Using homozygosity mapping and exome sequencing, we identified a homozygous truncating mutation (p.I562Tfs*23) in CLPB segregating with the disease in this family. CLPB codes for a member of the family of ATPases associated with various cellular activities (AAA(+) proteins) whose function remains unknown. We found that CLPB expression is abolished in fibroblasts from the patients. To investigate the function of this gene, we interfered with the translation of the zebrafish clpb orthologue using an antisense morpholino. The clpb morphants showed an abnormal touch-evoked response with increased swim velocity and tail beat frequency. This motor phenotype is reminiscent of that observed in the patients and is suggestive of increased excitability in neuronal circuits. Interestingly, knocking down clpb reduced the number of inhibitory glycinergic interneurons and increased a population of excitatory glutamatergic neurons in the spinal cord. CONCLUSIONS: Altogether, our study suggests that disruption of CLPB causes a novel form of neonatal encephalopathy associated with 3-methylglutaconic aciduria.


Assuntos
Encefalopatias/genética , Endopeptidase Clp/genética , Estudos de Associação Genética , Erros Inatos do Metabolismo/genética , Microcefalia/genética , Animais , Encefalopatias/diagnóstico , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Exoma , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/diagnóstico , Microcefalia/diagnóstico , Mutação , Linhagem , Fenótipo , Irmãos , Peixe-Zebra
13.
Hum Mol Genet ; 22(19): 3947-59, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23736301

RESUMO

Mutant superoxide dismutase 1 (SOD1) selectively associates with spinal cord mitochondria in rodent models of SOD1-mediated amyotrophic lateral sclerosis. A portion of mutant SOD1 exists in a non-native/misfolded conformation that is selectively recognized by conformational antibodies. Misfolded SOD1 is common to all mutant SOD1 models, is uniquely found in areas affected by the disease and is considered to mediate toxicity. We report that misfolded SOD1 recognized by the antibody B8H10 is present in greater abundance in mitochondrial fractions of SOD1(G93A) rat spinal cords compared with oxidized SOD1, as recognized by the C4F6 antibody. Using a novel flow cytometric assay, we detect an age-dependent deposition of B8H10-reactive SOD1 on spinal cord mitochondria from both SOD1(G93A) rats and SOD1(G37R) mice. Mitochondrial damage, including increased mitochondrial volume, excess superoxide production and increased exposure of the toxic BH3 domain of Bcl-2, tracks positively with the presence of misfolded SOD1. Lastly, B8H10 reactive misfolded SOD1 is present in the lysates and mitochondrial fractions of lymphoblasts derived from ALS patients carrying SOD1 mutations, but not in controls. Together, these results highlight misfolded SOD1 as common to two ALS rodent animal models and familial ALS patient lymphoblasts with four different SOD1 mutations. Studies in the animal models point to a role for misfolded SOD1 in mitochondrial dysfunction in ALS pathogenesis.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Superóxido Dismutase/análise , Superóxido Dismutase/química , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Anticorpos , Linhagem Celular , Modelos Animais de Doenças , Citometria de Fluxo , Gliose , Homeostase , Humanos , Camundongos , Dobramento de Proteína , Ratos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
14.
Nat Med ; 13(6): 754-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486090

RESUMO

Misfolding of Cu/Zn-superoxide dismutase (SOD1) is emerging as a mechanism underlying motor neuron degeneration in individuals with amyotrophic lateral sclerosis (ALS) who carry a mutant SOD1 gene (SOD1 ALS). Here we describe a structure-guided approach to developing an antibody that specifically recognizes monomer-misfolded forms of SOD1. We raised this antibody to an epitope that is normally buried in the SOD1 native homodimer interface. The SOD1 exposed dimer interface (SEDI) antibody recognizes only those SOD1 conformations in which the native dimer is disrupted or misfolded and thereby exposes the hydrophobic dimer interface. Using the SEDI antibody, we established the presence of monomer-misfolded SOD1 in three ALS mouse models, with G37R, G85R and G93A SOD1 mutations, and in a human individual with an A4V SOD1 mutation. Despite ubiquitous expression, misfolded SOD1 was found primarily within degenerating motor neurons. Misfolded SOD1 appeared before the onset of symptoms and decreased at the end stage of the disease, concomitant with motor neuron loss.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/imunologia , Epitopos/imunologia , Dobramento de Proteína , Superóxido Dismutase/imunologia , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos/metabolismo , Modelos Animais de Doenças , Epitopos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Conformação Proteica , Coelhos , Ratos , Frações Subcelulares/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
16.
Artigo em Inglês | MEDLINE | ID: mdl-38001557

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex, neurodegenerative disorder in which alterations in structural, physiological, and metabolic parameters act synergistically. Over the last decade there has been a considerable focus on developing drugs to slow the progression of the disease. Despite this, only four disease-modifying therapies are approved in North America. Although additional research is required for a thorough understanding of ALS, we have accumulated a large amount of knowledge that could be better integrated into future clinical trials to accelerate drug development and provide patients with improved treatment options. It is likely that future, successful ALS treatments will take a multi-pronged therapeutic approach, targeting different pathways, akin to personalized medicine in oncology. In this review, we discuss the link between ALS pathophysiology and treatments, looking at the therapeutic failures as learning opportunities that can help us refine and optimize drug development.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38519870

RESUMO

Objective: There are compelling ethical and practical reasons for patient engagement in research (PEIR), however, evidence for best practices remains limited. We investigated PEIR as implemented in CAPTURE ALS, a longitudinal observational study, from study inception through the first 2.5 years of operations. Methods: Data were drawn from three engagement initiatives: a community-led letter-writing campaign; consultation with patient and caregiver focus groups; and a study-embedded 'participant partner advisory council' (PPAC). Data were derived retrospectively from study documentation. We used the International Association of Public Participation (IAP2) participation spectrum as a framework for investigation. Results: 2401 letters from community members to the Canadian government affirmed study objectives and advocated for funding. Feedback from focus group consultation influenced study design and supported the study's data-sharing plan. PPAC collaboration shaped all aspects of the study. Contributions included: co-creation of governance documents, input on study protocols and public-facing communication, and development of engagement webinars for study participants and feedback surveys. Effective communication practices fostered collaboration and helped avoid tokenistic engagement. CAPTURE ALS encompassed all IAP2 participation levels. Conclusions: CAPTURE ALS was shaped by meaningful engagement initiatives over the course of the study. Lessons learned included: begin early and embed PEIR within research; build relationships and foster mutual learning; be flexible, open to adaptation, and seek diversity. Primary challenges included funding for early implementation, time needed to maintain relationships, and attrition due to disease progression. All IAP2 participation levels contributed to meaningful PEIR. 'Empowerment' was demonstrated through advocacy.

18.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374028

RESUMO

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Assuntos
Grânulos Citoplasmáticos , Esclerose Múltipla , Humanos , Grânulos Citoplasmáticos/metabolismo , Grânulos de Estresse , Oligodendroglia , Citocinas/metabolismo , Estresse Fisiológico , Esclerose Múltipla/metabolismo
19.
Hum Mol Genet ; 20(7): 1400-10, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21257637

RESUMO

TAR deoxyribonucleic acid-binding protein 43 (TDP-43) is a multifunctional protein with roles in transcription, pre-messenger ribonucleic acid (mRNA) splicing, mRNA stability and transport. TDP-43 interacts with other heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP A2, via its C-terminus and several hnRNP family members are involved in the cellular stress response. This relationship led us to investigate the role of TDP-43 in cellular stress. Our results demonstrate that TDP-43 and hnRNP A2 are localized to stress granules (SGs), following oxidative stress, heat shock and exposure to thapsigargin. TDP-43 contributes to both the assembly and maintenance of SGs in response to oxidative stress and differentially regulates key SGs components, including TIA-1 and G3BP. The controlled aggregation of TIA-1 is disrupted in the absence of TDP-43 resulting in slowed SG formation. In addition, TDP-43 regulates the levels of G3BP mRNA, a SG nucleating factor. The disease-associated mutation TDP-43(R361S) is a loss-of-function mutation with regards to SG formation and confers alterations in levels of G3BP and TIA-1. In contrast, a second mutation TDP-43(D169G) does not impact this pathway. Thus, mutations in TDP-43 are mechanistically divergent. Finally, the cellular function of TDP-43 extends beyond splicing and places TDP-43 as a participant of the central cellular response to stress and an active player in RNA storage.


Assuntos
Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Ligação a Poli(A)/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Estabilidade de RNA/fisiologia , Proteínas de Transporte/genética , Grânulos Citoplasmáticos/genética , DNA Helicases , Proteínas de Ligação a DNA/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Mutação , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Precursores de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA , Antígeno-1 Intracelular de Células T
20.
Proc Natl Acad Sci U S A ; 107(49): 21146-51, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078990

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause familial ALS. Mutant SOD1 preferentially associates with the cytoplasmic face of mitochondria from spinal cords of rats and mice expressing SOD1 mutations. Two-dimensional gels and multidimensional liquid chromatography, in combination with tandem mass spectrometry, revealed 33 proteins that were increased and 21 proteins that were decreased in SOD1(G93A) rat spinal cord mitochondria compared with SOD1(WT) spinal cord mitochondria. Analysis of this group of proteins revealed a higher-than-expected proportion involved in complex I and protein import pathways. Direct import assays revealed a 30% decrease in protein import only in spinal cord mitochondria, despite an increase in the mitochondrial import components TOM20, TOM22, and TOM40. Recombinant SOD1(G93A) or SOD1(G85R), but not SOD1(WT) or a Parkinson's disease-causing, misfolded α-synuclein(E46K) mutant, decreased protein import by >50% in nontransgenic mitochondria from spinal cord, but not from liver. Thus, altered mitochondrial protein content accompanied by selective decreases in protein import into spinal cord mitochondria comprises part of the mitochondrial damage arising from mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Proteínas Mitocondriais/análise , Mutação , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Fígado/química , Fígado/ultraestrutura , Mitocôndrias/metabolismo , Transporte Proteico , Proteômica/métodos , Ratos , Medula Espinal/química , Medula Espinal/ultraestrutura , Superóxido Dismutase/genética , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA