Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474127

RESUMO

Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI) found in Veterans presents with several complications, including cognitive and behavioral disturbances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI), this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous, uninterrupted video-EEG for up to four months. Following this period, we collected cortex and hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those without epilepsy (PTE-), and the control group (sham). Hundreds of differentially expressed proteins were identified in the cortex and hippocampus of PTE+ and PTE- relative to sham. Focusing on protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational modifications, and transport were disrupted. Computational metabolic modeling using dysregulated protein expression predicted mitochondrial proton pump dysregulation, suggesting electron transport chain dysregulation in the epileptic tissue relative to PTE-. Finally, data mining enabled the identification of several novel and previously validated TBI and epilepsy biomarkers in our data set, many of which were found to already be targeted by drugs in various phases of clinical testing. These findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae following rbTBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Camundongos , Animais , Epilepsia Pós-Traumática/complicações , Proteômica , Epilepsia/complicações , Córtex Cerebral
2.
Ann Biomed Eng ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851659

RESUMO

Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body's adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.

3.
Biomed Eng Educ ; 1(1): 127-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624487

RESUMO

Problem-based learning (PBL) has been effectively used within BME education, though there are several challenges in its implementation within courses with larger enrollments. Furthermore, the sudden transition to online learning from the COVID-19 pandemic introduced additional challenges in creating a similar PBL experience in an online environment. Online constrained PBL was implemented through asynchronous modules and synchronous web conferencing with rotating facilitators. Overall, facilitators perceived web conferencing facilitation to be similar to in-person, but noted that students were more easily "hidden" or distracted. Students did not comment on web conferencing facilitation specifically, but indicated the transition to online PBL was smooth. Course instructors identified that a fully synchronous delivery as well as modifications of Group Meeting Minutes assignments as potential modifications for future offerings. Future work will aim to address the perceptions and effectiveness of web conferencing facilitation for PBL courses within an undergraduate BME curriculum, as web conferencing could prove to be another significant breakthrough in addressing challenges of problem-based learning courses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA