Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23586, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568858

RESUMO

Acetaminophen (ACE) is a widely used analgesic and antipyretic drug with various applications, from pain relief to fever reduction. Recent studies have reported equivocal effects of habitual ACE intake on exercise performance, muscle growth, and risks to bone health. Thus, this study aimed to assess the impact of a 6-week, low-dose ACE regimen on muscle and bone adaptations in exercising and non-exercising rats. Nine-week-old Wistar rats (n = 40) were randomized to an exercise or control (no exercise) condition with ACE or without (placebo). For the exercise condition, rats ran 5 days per week for 6 weeks at a 5% incline for 2 min at 15 cm/s, 2 min at 20 cm/s, and 26 min at 25 cm/s. A human equivalent dose of ACE was administered (379 mg/kg body weight) in drinking water and adjusted each week based on body weight. Food, water intake, and body weight were measured daily. At the beginning of week 6, animals in the exercise group completed a maximal treadmill test. At the end of week 6, rats were euthanized, and muscle cross-sectional area (CSA), fiber type, and signaling pathways were measured. Additionally, three-point bending and microcomputer tomography were measured in the femur. Follow-up experiments in human primary muscle cells were used to explore supra-physiological effects of ACE. Data were analyzed using a two-way ANOVA for treatment (ACE or placebo) and condition (exercise or non-exercise) for all animal outcomes. Data for cell culture experiments were analyzed via ANOVA. If omnibus significance was found in either ANOVA, a post hoc analysis was completed, and a Tukey's adjustment was used. ACE did not alter body weight, water intake, food intake, or treadmill performance (p > .05). There was a treatment-by-condition effect for Young's Modulus where placebo exercise was significantly lower than placebo control (p < .05). There was no treatment by condition effects for microCT measures, muscle CSA, fiber type, or mRNA expression. Phosphorylated-AMPK was significantly increased with exercise (p < .05) and this was attenuated with ACE treatment. Furthermore, phospho-4EBP1 was depressed in the exercise group compared to the control (p < .05) and increased in the ACE control and ACE exercise group compared to placebo exercise (p < .05). A low dose of ACE did not influence chronic musculoskeletal adaptations in exercising rodents but acutely attenuated AMPK phosphorylation and 4EBP1 dephosphorylation post-exercise.


Assuntos
Acetaminofen , Condicionamento Físico Animal , Animais , Humanos , Ratos , Acetaminofen/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Carboidratos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos Wistar
2.
Brain Behav Immun ; 101: 383-393, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131441

RESUMO

BACKGROUND: Physical and psychological stress alter gut-brain axis activity, potentially causing intestinal barrier dysfunction that may, in turn, induce cognitive and mood impairments through exacerbated inflammation and blood brain barrier (BBB) permeability. These interactions are commonly studied in animals or artificial laboratory environments. However, military survival training provides an alternative and unique human model for studying the impacts of severe physical and psychological stress on the gut-brain axis in a realistic environment. PURPOSE: To determine changes in intestinal barrier and BBB permeability during stressful military survival training and identify relationships between those changes and markers of stress, inflammation, cognitive performance, and mood state. MATERIALS AND METHODS: Seventy-one male U.S. Marines (25.2 ± 2.6 years) were studied during Survival, Evasion, Resistance, and Escape (SERE) training. Measurements were conducted on day 2 of the 10-day classroom phase of training (PRE), following completion of the 7.5-day field-based simulation phase of the training (POST), and following a 27-day recovery period (REC). Fat-free mass (FFM) was measured to assess the overall physiologic impact of the training. Biomarkers of intestinal permeability (liposaccharide-binding protein [LBP]) and BBB permeability (S100 calcium-binding protein B [S100B]), stress (cortisol, dehydroepiandrosterone sulfate [DHEA-S] epinephrine, norepinephrine) and inflammation (interleukin-6 [IL-6], high-sensitivity C-reactive protein [hsCRP]) were measured in blood. Cognitive performance was assessed by psychomotor vigilance (PVT) and grammatical reasoning (GR) tests, and mood state by the Profile of Mood States (total mood disturbance; TMD), General Anxiety Disorder-7 (GAD-7), and Patient Health (PHQ-9) questionnaires. RESULTS: FFM, psychomotor vigilance, and LBP decreased from PRE to POST, while TMD, anxiety, and depression scores, and S100B, DHEA-S, IL-6, norepinephrine, and epinephrine concentrations all increased (all p ≤ 0.01). Increases in DHEA-S were associated with decreases in body mass (p = 0.015). Decreases in FFM were associated with decreases in LBP concentrations (p = 0.015), and both decreases in FFM and LBP were associated with increases in TMD and depression scores (all p < 0.05) but not with changes in cognitive performance. Conversely, increases in S100B concentrations were associated with decreases in psychomotor vigilance (p < 0.05) but not with changes in mood state or LBP concentrations. CONCLUSIONS: Evidence of increased intestinal permeability was not observed in this military survival training-based model of severe physical and psychological stress. However, increased BBB permeability was associated with stress and cognitive decline, while FFM loss was associated with mood disturbance, suggesting that distinct mechanisms may contribute to decrements in cognitive performance and mood state during the severe physical and psychological stress experienced during military survival training.


Assuntos
Barreira Hematoencefálica , Eixo Encéfalo-Intestino , Cognição , Estresse Psicológico , Afeto , Biomarcadores , Barreira Hematoencefálica/metabolismo , Desidroepiandrosterona , Epinefrina , Humanos , Inflamação , Interleucina-6/metabolismo , Masculino , Norepinefrina , Permeabilidade , Estresse Psicológico/metabolismo
3.
J Nutr ; 151(9): 2551-2563, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34132333

RESUMO

BACKGROUND: Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. OBJECTIVE: The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB; half-lives) for proteins across the muscle proteome. METHODS: Female 6-wk-old obese Zucker rats (Leprfa+/fa+, n = 48) were randomly assigned to one of four diets for 10 wk: ad libitum-standard protein (AL-SP; 15% kcal from protein), AL-HP (35% kcal from protein), ER-SP, and ER-HP (both fed 60% feed consumed by AL-SP). During week 10, heavy/deuterated water (2H2O) was administered by intraperitoneal injection, and isotopic steady-state was maintained via 2H2O in drinking water. Rats were euthanized after 1 wk, and mixed-MPS as well as fractional replacement rate (FRR), relative concentrations, and half-lives of individual muscle proteins were quantified in the gastrocnemius. Data were analyzed using 2-factor (energy × protein) ANOVAs and 2-tailed t-tests or binomial tests as appropriate. RESULTS: Absolute MPS was lower in ER than AL for mixed-MPS (-29.6%; P < 0.001) and MPS of most proteins measured [23/26 myofibrillar, 48/60 cytoplasmic, and 46/60 mitochondrial (P < 0.05)], corresponding with lower gastrocnemius mass in ER compared with AL (-29.4%; P < 0.001). Although mixed-muscle protein half-life was not different between groups, prolonged half-lives were observed for most individual proteins in HP compared with SP in ER and AL (P < 0.001), corresponding with greater gastrocnemius mass in HP than SP (+5.3%; P = 0.043). CONCLUSIONS: ER decreased absolute bulk MPS and most individual MPS rates compared with AL, and HP prolonged half-lives of most proteins across the proteome. These data suggest that HP, independent of energy intake, may reduce MPB, and reductions in MPS may contribute to lower gastrocnemius mass during ER by reducing protein deposition in obese female Zucker rats.


Assuntos
Dieta Rica em Proteínas , Proteínas Musculares , Animais , Proteínas Alimentares , Feminino , Músculo Esquelético , Obesidade , Proteoma , Ratos , Ratos Zucker
4.
Acta Radiol ; 62(9): 1178-1187, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32996322

RESUMO

BACKGROUND: Ultrasonography is used to evaluate muscle quality (i.e. echo intensity [EI]), but an attenuation of ultrasound waves occurs in deeper tissues, potentially affecting these measures. PURPOSE: To determine whether muscle thickness (MT) affects EI and if EI varies between the superficial and deep portions of the muscle. MATERIALS AND METHODS: MT, EI, subcutaneous adipose tissue thickness (SAT), tissue depth (DISDEEP), and EI of the overall (EIFULL) as well as deep (EIDEEP) and superficial (EISUPF) portions of the vastus lateralis (VL) were assessed in 33 resistance-trained males using ultrasonography. The difference (EIDIFF) between EISUPF and EIDEEP was calculated. Mean differences between EIFULL, EISUPF, and EIDEEP were analyzed using a repeated-measures analysis of variance (ANOVA). Relationships between measures of muscle depth/ thickness and EI were examined using Pearson's r. RESULTS: EISUPF was greater than EIDEEP (P < 0.001) and EIFULL (P < 0.001). MT was negatively correlated with EIFULL (P < 0.001) and positively correlated with EIDIFF (P < 0.001). SAT was not correlated with any EI measure, but DISDEEP was positively correlated with EIDIFF (P < 0.001). CONCLUSION: EI of the VL is heterogeneous, as the deeper portion produces lower values than the superficial portion. Thicker muscles present lower EI but have greater discrepancies in EI between the superficial and deep portions. Although SAT was not correlated with EI, DISDEEP was related to EIDIFF, demonstrating that the combination of MT and SAT should be considered when evaluating muscle quality. Future research is necessary to determine if changes in EI following resistance training are driven by increases in MT.


Assuntos
Músculo Quadríceps/diagnóstico por imagem , Treinamento Resistido , Ultrassonografia/métodos , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem
5.
J Strength Cond Res ; 34(11): 3042-3054, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33105353

RESUMO

Wells, AJ, Varanoske, AN, Coker, NA, Kozlowski, GJ, Frosti, CL, Boffey, D, Harat, I, Jahani, S, Gepner, Y, and Hoffman, JR. Effect of ß-alanine supplementation on monocyte recruitment and cognition during a 24-hour simulated military operation. J Strength Cond Res 34(11): 3042-3054, 2020-Sustained military operations (SUSOPs) result in psychological stress and cognitive dysfunction, which may be related to the recruitment of classical monocytes into the brain. This study examined the effect of beta-alanine (BA) on cognition and monocyte recruitment during a simulated 24-hour SUSOP. Nineteen healthy men ingested 12-g/d BA or placebo for 14 days before an SUSOP. Monocyte chemoattractant protein-1 (MCP-1), C-C chemokine receptor-2 (CCR2), and macrophage-1-antigen (CD11b) expression were assessed through multiplex assay and flow cytometry. Psychological stress and cognition were assessed through Automated Neuropsychological Assessment Metrics (ANAM). A composite measure of cognition (COGcomp) was generated from throughput scores extracted from 7 ANAM cognitive tests. Assessments occurred at baseline (0H), 12 hours (12H), 18 hours (18H), and 24 hours (24H). Significance was accepted at p ≤ 0.05. No significant effect of BA was noted for any variable (p's > 0.05). The frequency and severity of symptoms of psychological stress increased significantly at 18 and 24H compared with 0 and 12H (p's < 0.05). COGcomp decreased significantly at 18 and 24H compared with 0 and 12H (p's ≤ 0.001). MCP-1 peaked at 18H was significantly lower at 24H compared with 18H but remained elevated at 24H compared with 0H (p's < 0.001). CCR2 expression was significantly lower at 12 (p = 0.031), 18, and 24H (p's < 0.001). CD11b expression was significantly higher at 12H (p = 0.039) and 24H (p's = 0.003). MCP-1 was negatively associated with COGcomp (ß = -0.395, p = 0.002, r2 = 0.174). Neither CCR2 or CD11b was related to COGcomp (p's > 0.05). Cognitive dysfunction during SUSOPs is related to serum concentrations of MCP-1 but is not influenced by BA supplementation.


Assuntos
Cognição/efeitos dos fármacos , Militares , Monócitos/efeitos dos fármacos , Estresse Psicológico/fisiopatologia , beta-Alanina/farmacologia , Adulto , Quimiocina CCL2/biossíntese , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Antígeno de Macrófago 1/biossíntese , Masculino , Monócitos/imunologia , Receptores CCR2/biossíntese , Treinamento por Simulação/métodos , Estresse Psicológico/epidemiologia , Adulto Jovem
6.
Amino Acids ; 51(1): 49-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30003336

RESUMO

ß-alanine supplementation increases muscle carnosine content and improves anaerobic exercise performance by enhancing intracellular buffering capacity. ß-alanine ingestion in its traditional rapid-release formulation (RR) is associated with the symptoms of paresthesia. A sustained-release formulation (SR) of ß-alanine has been shown to circumvent paresthesia and extend the period of supply to muscle for carnosine synthesis. The purpose of this investigation was to compare 28 days of SR and RR formulations of ß-alanine (6 g day-1) on changes in carnosine content of the vastus lateralis and muscle fatigue. Thirty-nine recreationally active men and women were assigned to one of the three groups: SR, RR, or placebo (PLA). Participants supplementing with SR and RR formulations increased muscle carnosine content by 50.1% (3.87 mmol kg-1ww) and 37.9% (2.62 mmol kg-1ww), respectively. The change in muscle carnosine content in participants consuming SR was significantly different (p = 0.010) from those consuming PLA, but no significant difference was noted between RR and PLA (p = 0.077). Although participants ingesting SR experienced a 16.4% greater increase in muscle carnosine than RR, fatigue during maximal voluntary isometric contractions was significantly attenuated in both SR and RR compared to PLA (p = 0.002 and 0.024, respectively). Symptoms of paresthesia were significantly more frequent in RR compared to SR, the latter of which did not differ from PLA. Results of this study demonstrated that only participants consuming the SR formulation experienced a significant increase in muscle carnosine. Differences in the muscle carnosine response between these formulations may have practical significance for athletic populations in which small changes may have important implications on performance.


Assuntos
Carnosina/biossíntese , Preparações de Ação Retardada/administração & dosagem , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Parestesia/prevenção & controle , beta-Alanina/administração & dosagem , Adulto , Carnosina/agonistas , Método Duplo-Cego , Esquema de Medicação , Exercício Físico , Feminino , Humanos , Contração Isométrica/efeitos dos fármacos , Masculino , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Parestesia/metabolismo , Parestesia/fisiopatologia
7.
Res Sports Med ; 27(2): 204-218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30348016

RESUMO

ß-Hydroxy-ß-Methylbutyrate (HMB) is a metabolite of the branched-chain amino acid leucine and its ketoacid α-ketoisocaproate. HMB has been widely used as an ergogenic supplement to increase muscle strength, muscle hypertrophy and enhance recovery. The physiological mechanisms that underlie these benefits are related to HMB's ability to stimulate muscle protein synthesis and minimize muscle breakdown. Although evidence supporting the benefits of HMB supplementation is not conclusive, many of these studies have suffered from methodological flaws including different formulations, supplement duration and population studied. HMB in its free acid formulation is suggestive of having a greater potential for efficacy in both trained and untrained populations than its calcium-salt form. However, the evidence regarding HMB's role in limiting muscle degradation and increasing muscle protein synthesis has created an exciting interest in examining its efficacy among untrained individuals. Recent investigations examining intense training have demonstrated efficacy in maintaining muscle mass and attenuating the inflammatory response.


Assuntos
Desempenho Atlético/fisiologia , Músculo Esquelético/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Esportiva/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Esportiva/fisiologia , Valeratos/administração & dosagem , Aminoácidos Essenciais/administração & dosagem , Atletas , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Leucina/administração & dosagem , Desenvolvimento Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos
8.
Amino Acids ; 49(8): 1415-1426, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28555251

RESUMO

Attenuating TNFα/TNFr1 signaling in monocytes has been proposed as a means of mitigating inflammation. The purpose of this study was to examine the effects of a milk protein supplement on TNFα and monocyte TNFr1 expression. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) ingested supplement (SUPP) or placebo (PL) immediately post-exercise in a randomized, cross-over design. Blood samples were obtained at baseline (BL), immediately (IP), 30-min (30P), 1-h (1H), 2-h (2H), and 5-h (5H) post-exercise to assess plasma concentrations of myoglobin; tumor necrosis factor-alpha (TNFα); and expression of tumor necrosis factor receptor 1 (TNFr1) on classical, intermediate, and non-classical monocytes. Magnitude-based inferences were used to provide inferences on the true effects of SUPP compared to PL. Plasma TNFα concentrations were "likely attenuated" (91.6% likelihood effect) from BL to 30P in the SUPP group compared with PL (d = 0.87; mean effect: 2.3 ± 2.4 pg mL-1). TNFr1 expressions on classical (75.9% likelihood effect) and intermediate (93.0% likelihood effect) monocytes were "likely attenuated" from BL to 2H in the SUPP group compared with PL (d = 0.67; mean effect: 510 ± 670 RFU, and d = 1.05; mean effect: 2500 ± 2300 RFU, respectively). TNFr1 expression on non-classical monocytes was "likely attenuated" (77.6% likelihood effect) from BL to 1H in the SUPP group compared with PL (d = 0.69; mean effect: 330 ± 430 RFU). Ingestion of a milk protein supplement immediately post-exercise appears to attenuate both plasma TNFα concentrations and TNFr1 expression on monocyte subpopulations in resistance-trained men.


Assuntos
Suplementos Nutricionais , Proteínas do Leite/administração & dosagem , Monócitos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Treinamento Resistido , Fator de Necrose Tumoral alfa/sangue , Adulto , Células Cultivadas , Estudos Cross-Over , Ingestão de Alimentos , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Monócitos/citologia , Adulto Jovem
9.
Muscle Nerve ; 56(1): 93-98, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27862034

RESUMO

INTRODUCTION: Echo intensity of skeletal muscle measured by means of ultrasonography has been used to assess muscle quality, however, the heterogeneity of echo intensity has not been thoroughly investigated. Therefore, this study examined echo intensity in different sections of panoramic ultrasound images captured in the transverse plane. METHODS: Echo intensity of the vastus lateralis was assessed in 24 men (20.2 ± 1.6 years) using panoramic ultrasonography. Echo intensity homogeneity was examined by dividing each image into 3 compartments of equal horizontal length (tertiles). RESULTS: No differences were found between echo intensity of the anterior tertile (59.1 ± 9.1 AU), posterior tertile (56.4 ± 9.9 AU), lateral tertile (58.7 ± 9.9 AU), or the overall panoramic image (58.0 ± 8.8 AU). CONCLUSIONS: Echo intensity of the vastus lateralis appears to be homogeneous as assessed in the transverse plane. Further research is necessary to determine if still imaging is sufficient to obtain an accurate measure of echo intensity. Muscle Nerve 56: 93-98, 2017.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Ultrassonografia/métodos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
10.
J Am Coll Nutr ; 36(8): 608-616, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910200

RESUMO

OBJECTIVE: ß-alanine (BA) is a nonproteogenic amino acid that combines with histidine to form carnosine. The amount taken orally in individual doses, however, is limited due to symptoms of paresthesia that are associated with higher doses. The use of a sustained-release formulation has been reported to reduce the symptoms of paresthesia, suggesting that a greater daily dose may be possible. The purpose of the present study was to determine whether increasing the daily dose of BA can result in a similar increase in muscle carnosine in a reduced time. METHODS: Eighteen men and twelve women were randomized into either a placebo (PLC), 6-g BA (6G), or 12-g BA (12G) groups. PLC and 6G were supplemented for 4 weeks, while 12G was supplemented for 2 weeks. A resting blood draw and muscle biopsy were obtained prior to (PRE) and following (POST) supplementation. Plasma and muscle metabolites were measured by high-performance liquid chromatography. The loss in peak torque (ΔPT) was calculated from maximal isometric contractions before and after 250 isokinetic kicks at 180°·sec-1 PRE and POST. RESULTS: Both 12G (p = 0.026) and 6G (p = 0.004) increased muscle carnosine compared to PLC. Plasma histidine was decreased from PRE to POST in 12G compared to PLC (p = 0.002) and 6G (p = 0.001), but no group x time interaction (p = 0.662) was observed for muscle histidine. No differences were observed for any hematological measure (e.g., complete blood counts) or in symptoms of paresthesia among the groups. Although no interaction was noted in ΔPT, a trend (p = 0.073) was observed. CONCLUSION: Results of this investigation indicate that a BA supplementation protocol of 12 g/d-1, using a sustained-release formulation, can accelerate the increase in carnosine content in skeletal muscle while attenuating paresthesia.


Assuntos
Carnosina/metabolismo , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Esportiva , beta-Alanina/administração & dosagem , Adulto , Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Relação Dose-Resposta a Droga , Exercício Físico , Feminino , Histidina/sangue , Humanos , Masculino , Músculo Esquelético/metabolismo , Avaliação Nutricional , Parestesia/tratamento farmacológico , Cooperação do Paciente , Inquéritos e Questionários , Adulto Jovem , beta-Alanina/sangue
11.
Eur J Appl Physiol ; 117(7): 1287-1298, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28447186

RESUMO

PURPOSE: The purpose of this study was to compare the physiological responses of a high-volume (HV; 8 sets of 10 repetitions) versus high-intensity (HI; 8 sets of 3 repetitions) exercise protocol in resistance-trained men. METHODS: Twelve men (24.5 ± 4.2 years; 82.3 ± 8.4 kg; 175.2 ± 5.5 cm) with 6.3 ± 3.4 years of resistance training experience performed each protocol in a counterbalanced, randomized order. Performance [counter movement jump peak power (CMJP), isokinetic (ISOK) and isometric leg extension (MVIC), isometric mid-thigh pull (IMTP), and isometric squat (ISQ)] and muscle morphological [cross-sectional area (CSA) of vastus lateralis] assessments were performed at baseline (BL), 30-min (P-30 min), 24-h (P-24 h), 48-h (P-48 h), and 72-h (P-72 h) post-exercise for each testing session. In addition, endocrine (testosterone and cortisol), inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)], and markers of muscle damage [creatine kinase (CK), lactate dehydrogenase (LDH), and myoglobin (Mb)] were assessed at the same time points. RESULTS: Significantly greater reductions in CMJP (p < 0.001), and peak torque during both ISOK (p = 0.003) and MVIC (p = 0.008) at P-30 min were detected in HV compared to HI protocol. MVIC was still impaired at P-72 h following the HV protocol, while no differences were noted following HI. Markers of muscle damage (LDH, CK, and Mb) were significantly elevated following both HV and HI (p < 0.05), while cortisol and IL-6 concentrations were significantly elevated at P-30 min following HV only (p < 0.001 and p < 0.05, respectively). CONCLUSIONS: Results indicate that high-volume resistance exercise results in greater performance deficits, and a greater extent of muscle damage, than a bout of high-intensity resistance exercise.


Assuntos
Treinamento Intervalado de Alta Intensidade/efeitos adversos , Músculo Esquelético/fisiologia , Mialgia/reabilitação , Treinamento Resistido/efeitos adversos , Adulto , Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Humanos , Hidrocortisona/sangue , Interleucina-6/sangue , Contração Isométrica , L-Lactato Desidrogenase/sangue , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/metabolismo , Mialgia/etiologia , Mialgia/fisiopatologia , Mioglobina/metabolismo , Recuperação de Função Fisiológica , Testosterona/sangue
12.
Clin Anat ; 30(4): 533-542, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27792257

RESUMO

Muscle morphological characteristics obtained via ultrasonography have been used to quantify the size, architecture, and quality of skeletal muscle. Previous research has utilized varying ultrasonographic techniques, however there is little information comparing these different techniques. Muscle morphological characteristics, including cross-sectional area (CSA), muscle thickness (MT), echo intensity (EI), and subcutaneous adipose tissue thickness (SubQ) were assessed in 24 males (20.2 ± 1.6 y) via three panoramic-images captured in the transverse plane (PTI) and three still-images captured in the longitudinal plane (SLI). Cross-sectional area of PTI was significantly greater than CSA of SLI (P < 0.001), however positive correlations existed between the two measurements (r = 0.752, P < 0.001). Echo intensity of PTI was significantly lower than EI of SLI (P = 0.002), however, positive correlations existed between the two measurements (r = 0.681, P < 0.001). MT of PTI was significantly greater than MT of SLI (P = 0.003), but positive correlations existed between measurements (r = 0.809, P < 0.001). However, SubQ of PTI was significantly lower than SubQ of SLI (P < 0.001), but positive correlations existed between measurements (r = 0.915, P < 0.001). In conclusions, PTI and SLI yield significantly different CSA, EI, MT, and SubQ measurements but these values are highly correlated. Still longitudinal images require less time, cost, and expertise, and therefore may be preferred over PTI in future studies. Clin. Anat. 30:533-542, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Músculo Quadríceps/diagnóstico por imagem , Ultrassonografia/métodos , Humanos , Masculino , Valores de Referência , Adulto Jovem
13.
J Strength Cond Res ; 31(12): 3454-3462, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28859014

RESUMO

Gordon, JA III, Hoffman, JR, Arroyo, E, Varanoske, AN, Coker, NA, Gepner, Y, Wells, AJ, Stout, JR, and Fukuda, DH. Comparisons in the recovery response from resistance exercise between young and middle-aged men. J Strength Cond Res 31(12): 3454-3462, 2017-The purpose of this study was to compare the effects of a bout of high-volume isokinetic resistance exercise protocol (HVP) on lower-body strength and markers of inflammation and muscle damage during recovery between young and middle-aged adult men. Nineteen recreationally trained men were classified as either a young adult (YA: 21.8 ± 2.0 years; 90.7 ± 11.6 kg) or a middle-aged adult (MA: 47.0 ± 4.4 years; 96.0 ± 21.5 kg) group. The HVP consisted of 8 sets of 10 repetitions, with 1 minute of rest between each set, performed on an isokinetic dynamometer at 60°·s. Maximal voluntary isometric contractions and isokinetic peak torque (PKT) and average torque (AVGT) (measured at 240° and 60°·s, respectively) were assessed at baseline (BL), immediately post (IP), 120 minutes, 24, and 48 hours after HVP. Blood was obtained at BL, IP, 30, 60, 120 minute, 24, and 48 hours after HVP to assess muscle damage and inflammation. All performance data were analyzed using repeated measures analysis of covariance, whereas all inflammatory and muscle damage markers were analyzed using a 2-way (time × group) repeated measures analysis of variance. Results revealed no between-group differences for PKT, AVGT, or rate of torque development at 200 ms (RTD200). No between-group differences in myoglobin, creatine kinase, C-reactive protein, or interleukin-6 were observed. Although BL differences in muscle performance were observed between YA and MA, no between-group differences were noted in performance recovery measures from high-volume isokinetic exercise in recreationally trained men. These results also indicate that the inflammatory and muscle damage response from high-volume isokinetic exercise is similar between recreationally trained, young, and middle-aged adult men.


Assuntos
Mediadores da Inflamação/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Descanso/fisiologia , Adulto , Fatores Etários , Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Humanos , Interleucina-6/metabolismo , Contração Isométrica/fisiologia , Masculino , Pessoa de Meia-Idade , Mioglobina/metabolismo , Torque , Adulto Jovem
14.
Med Sci Sports Exerc ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39160756

RESUMO

PURPOSE: Energy deficiency decreases muscle protein synthesis (MPS), possibly due to greater whole-body essential amino acid (EAA) requirements and reliance on energy stores. Whether energy deficit-induced anabolic resistance is overcome with non-nitrogenous supplemental energy or if increased energy as EAA is needed is unclear. We tested the effects of energy as EAA or carbohydrate, combined with an EAA-enriched whey protein, on post-exercise MPS (%/h) and whole-body protein turnover (g protein/240 min). METHODS: 17 adults (mean ± SD; age: 26 ± 6 y, BMI: 25 ± 3 kg/m 2 ) completed a randomized, parallel study including two 5-d energy conditions (BAL, energy balance; DEF, -30 ± 3% energy requirements) separated by ≥7 d. Volunteers consumed EAA-enriched whey with added EAA (+EAA; 304 kcal, 56 g protein, 48 g EAA, 17 g carbohydrate, 2 g fat; n = 8) or added carbohydrate (+CHO; 311 kcal, 34 g protein, 24 g EAA, 40 g carbohydrate, 2 g fat; n = 9) following exercise. MPS and whole-body protein synthesis (PS), breakdown (PB), and net balance (NET; PS-PB) were estimated postexercise with isotope kinetics. RESULTS: MPS rates were greater in +EAA (0.083 ± 0.02) than +CHO (0.059 ± 0.01; P = 0.015) during DEF, but similar during BAL ( P = 0.45) and across energy conditions within treatments ( P = 0.056). PS rates were greater for +EAA (BAL, 117.9 ± 16.5; DEF, 110.3 ± 14.8) than +CHO (BAL, 81.6 ± 8.0; DEF, 83.8 ± 5.9 g protein/240 min; both P < 0.001), and greater during BAL than DEF in +EAA ( P = 0.045). PB rates were less in +EAA (8.0 ± 16.5) than +CHO (37.8 ± 7.6 g protein/240 min; P < 0.001), and NET was greater in +EAA (106.1 ± 6.3) than +CHO (44.8 ± 8.5 g protein/240 min; P < 0.001). CONCLUSIONS: These data suggest that supplementing EAA-enriched whey protein with more energy as EAA, not carbohydrate, maintains postexercise MPS during energy deficit at rates comparable to those observed during energy balance.

15.
Physiol Rep ; 11(6): e15649, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949577

RESUMO

Physical performance decrements observed during multi-stressor military operations may be attributed, in part, to cellular membrane dysfunction, which is quantifiable using phase angle (PhA) derived from bioelectrical impedance analysis (BIA). Positive relationships between PhA and performance have been previously reported in cross-sectional studies and following longitudinal exercise training programs, but whether changes in PhA are indicative of acute decrements in performance during military operations is unknown. Data from the Optimizing Performance for Soldiers II study, a clinical trial examining the effects of exogenous testosterone administration on body composition and performance during military stress, was used to evaluate changes in PhA and their associations with physical performance. Recreationally active, healthy males (n = 34; 26.6 ± 4.3 years; 77.9 ± 12.4 kg) were randomized to receive testosterone undecanoate or placebo before a 20-day simulated military operation, which was followed by a 23-day recovery period. PhA of the whole-body (Whole) and legs (Legs) and physical performance were measured before (PRE) and after (POST) the simulated military operation as well as in recovery (REC). Independent of treatment, PhAWhole and PhALegs decreased from PRE to POST (p < 0.001), and PhALegs , but not PhAWhole , remained lower at REC than PRE. PhAWhole at PRE and REC were associated with vertical jump height and Wingate peak power (p < 0.001-0.050), and PhAWhole at PRE was also associated with 3-RM deadlift mass (p = 0.006). However, PhA at POST and changes in PhA from PRE to POST were not correlated with any performance measure (p > 0.05). Additionally, PhA was not associated with aerobic performance at any timepoint. In conclusion, reduced PhA from PRE to POST provides indirect evidence of cellular membrane disruption. Associations between PhA and strength and power were only evident at PRE and REC, suggesting PhA may be a useful indicator of strength and power, but not aerobic capacity, in non-stressed conditions, and not a reliable indicator of physical performance during severe physiological stress.


Assuntos
Militares , Masculino , Humanos , Impedância Elétrica , Estudos Transversais , Composição Corporal/fisiologia , Exercício Físico
16.
Am J Clin Nutr ; 117(4): 802-813, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796647

RESUMO

BACKGROUND: Recent 3-dimensional optical (3DO) imaging advancements have provided more accessible, affordable, and self-operating opportunities for assessing body composition. 3DO is accurate and precise in clinical measures made by DXA. However, the sensitivity for monitoring body composition change over time with 3DO body shape imaging is unknown. OBJECTIVES: This study aimed to evaluate the ability of 3DO in monitoring body composition changes across multiple intervention studies. METHODS: A retrospective analysis was performed using intervention studies on healthy adults that were complimentary to the cross-sectional study, Shape Up! Adults. Each participant received a DXA (Hologic Discovery/A system) and 3DO (Fit3D ProScanner) scan at the baseline and follow-up. 3DO meshes were digitally registered and reposed using Meshcapade to standardize the vertices and pose. Using an established statistical shape model, each 3DO mesh was transformed into principal components, which were used to predict whole-body and regional body composition values using published equations. Body composition changes (follow-up minus the baseline) were compared with those of DXA using a linear regression analysis. RESULTS: The analysis included 133 participants (45 females) in 6 studies. The mean (SD) length of follow-up was 13 (5) wk (range: 3-23 wk). Agreement between 3DO and DXA (R2) for changes in total FM, total FFM, and appendicular lean mass were 0.86, 0.73, and 0.70, with root mean squared errors (RMSEs) of 1.98 kg, 1.58 kg, and 0.37 kg, in females and 0.75, 0.75, and 0.52 with RMSEs of 2.31 kg, 1.77 kg, and 0.52 kg, in males, respectively. Further adjustment with demographic descriptors improved the 3DO change agreement to changes observed with DXA. CONCLUSIONS: Compared with DXA, 3DO was highly sensitive in detecting body shape changes over time. The 3DO method was sensitive enough to detect even small changes in body composition during intervention studies. The safety and accessibility of 3DO allows users to self-monitor on a frequent basis throughout interventions. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults; https://clinicaltrials.gov/ct2/show/NCT03637855); NCT03394664 (Macronutrients and Body Fat Accumulation: A Mechanistic Feeding Study; https://clinicaltrials.gov/ct2/show/NCT03394664); NCT03771417 (Resistance Exercise and Low-Intensity Physical Activity Breaks in Sedentary Time to Improve Muscle and Cardiometabolic Health; https://clinicaltrials.gov/ct2/show/NCT03771417); NCT03393195 (Time Restricted Eating on Weight Loss; https://clinicaltrials.gov/ct2/show/NCT03393195), and NCT04120363 (Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations; https://clinicaltrials.gov/ct2/show/NCT04120363).


Assuntos
Composição Corporal , Imagem Óptica , Masculino , Adulto , Feminino , Humanos , Absorciometria de Fóton/métodos , Estudos Transversais , Estudos Retrospectivos , Composição Corporal/fisiologia , Impedância Elétrica , Índice de Massa Corporal
17.
J Cachexia Sarcopenia Muscle ; 13(6): 2595-2607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36059250

RESUMO

The French chemist Michel Eugène Chevreul discovered creatine in meat two centuries ago. Extensive biochemical and physiological studies of this organic molecule followed with confirmation that creatine is found within the cytoplasm and mitochondria of human skeletal muscles. Two groups of investigators exploited these relationships five decades ago by first estimating the creatine pool size in vivo with 14 C and 15 N labelled isotopes. Skeletal muscle mass (kg) was then calculated by dividing the creatine pool size (g) by muscle creatine concentration (g/kg) measured on a single muscle biopsy or estimated from the literature. This approach for quantifying skeletal muscle mass is generating renewed interest with the recent introduction of a practical stable isotope (creatine-(methyl-d3 )) dilution method for estimating the creatine pool size across the full human lifespan. The need for a muscle biopsy has been eliminated by assuming a constant value for whole-body skeletal muscle creatine concentration of 4.3 g/kg wet weight. The current single compartment model of estimating creatine pool size and skeletal muscle mass rests on four main assumptions: tracer absorption is complete; tracer is all retained; tracer is distributed solely in skeletal muscle; and skeletal muscle creatine concentration is known and constant. Three of these assumptions are false to varying degrees. Not all tracer is retained with urinary isotope losses ranging from 0% to 9%; an empirical equation requiring further validation is used to correct for spillage. Not all tracer is distributed in skeletal muscle with non-muscle creatine sources ranging from 2% to 10% with a definitive value lacking. Lastly, skeletal muscle creatine concentration is not constant and varies between muscles (e.g. 3.89-4.62 g/kg), with diets (e.g. vegetarian and omnivore), across age groups (e.g. middle-age, ~4.5 g/kg; old-age, 4.0 g/kg), activity levels (e.g. athletes, ~5 g/kg) and in disease states (e.g. muscular dystrophies, <3 g/kg). Some of the variability in skeletal muscle creatine concentrations can be attributed to heterogeneity in the proportions of wet skeletal muscle as myofibres, connective tissues, and fat. These observations raise serious concerns regarding the accuracy of the deuterated-creatine dilution method for estimating total body skeletal muscle mass as now defined by cadaver analyses of whole wet tissues and in vivo approaches such as magnetic resonance imaging. A new framework is needed in thinking about how this potentially valuable method for measuring the creatine pool size in vivo can be used in the future to study skeletal muscle biology in health and disease.


Assuntos
Creatina , Músculo Esquelético , Pessoa de Meia-Idade , Humanos , Pré-Escolar , Técnicas de Diluição do Indicador , Músculo Esquelético/patologia , Atletas , Imageamento por Ressonância Magnética
18.
J Appl Physiol (1985) ; 133(2): 426-442, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796614

RESUMO

Male military personnel conducting strenuous operations experience reduced testosterone concentrations, muscle mass, and physical performance. Pharmacological restoration of normal testosterone concentrations may attenuate performance decrements by mitigating muscle mass loss. Previously, administering testosterone enanthate (200 mg/wk) during 28 days of energy deficit prompted supraphysiological testosterone concentrations and lean mass gain without preventing isokinetic/isometric deterioration. Whether administering a practical dose of testosterone protects muscle and performance during strenuous operations is undetermined. The objective of this study was to test the effects of a single dose of testosterone undecanoate on body composition and military-relevant physical performance during a simulated operation. After a 7-day baseline phase (P1), 32 males (means ± SD; 77.1 ± 12.3 kg, 26.5 ± 4.4 yr) received a single dose of either testosterone undecanoate (750 mg; TEST) or placebo (PLA) before a 20-day simulated military operation (P2), followed by a 23-day recovery (P3). Assessments included body composition and physical performance at the end of each phase and circulating endocrine biomarkers throughout the study. Total and free testosterone concentrations in TEST were greater than PLA throughout most of P2 (P < 0.05), but returned to P1 values during P3. Fat-free mass (FFM) was maintained from P1 to P2 in TEST (means ± SE; 0.41 ± 0.65 kg, P = 0.53), but decreased in PLA (-1.85 ± 0.69 kg, P = 0.01) and recovered in P3. Regardless of treatment, total body mass and fat mass decreased from P1 to P2 (P < 0.05), but did not fully recover by P3. Physical performance decreased during P2 (P < 0.05) and recovered by P3, regardless of treatment. In conclusion, administering testosterone undecanoate before a simulated military operation protected FFM but did not prevent decrements in physical performance.NEW & NOTEWORTHY This study demonstrated that a single intramuscular dose of testosterone undecanoate (750 mg) administered to physically active males before a 20-day simulated, multi-stressor military operation increased circulating total and free testosterone concentrations within normal physiological ranges and spared FFM. However, testosterone administration did not attenuate decrements in physical performance across multiple measures of power, strength, anaerobic or aerobic capacity.


Assuntos
Militares , Composição Corporal , Humanos , Masculino , Poliésteres/farmacologia , Testosterona/análogos & derivados
19.
Front Physiol ; 12: 706699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421645

RESUMO

Muscle quality (MQ), defined as the amount of strength and/or power per unit of muscle mass, is a novel index of functional capacity that is increasingly relied upon as a critical biomarker of muscle health in low functioning aging and pathophysiological adult populations. Understanding the phenotypical attributes of MQ and how to use it as an assessment tool to explore the efficacy of resistance exercise training interventions that prioritize functional enhancement over increases in muscle size may have implications for populations beyond compromised adults, including healthy young adults who routinely perform physically demanding tasks for competitive or occupational purposes. However, MQ has received far less attention in healthy young populations than it has in compromised adults. Researchers and practitioners continue to rely upon static measures of lean mass or isolated measures of strength and power, rather than using MQ, to assess integrated functional responses to resistance exercise training and physical stress. Therefore, this review will critically examine MQ and the evidence base to establish this metric as a practical and important biomarker for functional capacity and performance in healthy, young populations. Interventions that enhance MQ, such as high-intensity stretch shortening contraction resistance exercise training, will be highlighted. Finally, we will explore the potential to leverage MQ as a practical assessment tool to evaluate function and enhance performance in young populations in non-traditional research settings.

20.
J Diet Suppl ; 18(2): 147-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32138563

RESUMO

Introduction: ß-alanine (BA) supplementation may improve cognition and mitigate symptoms of anxiety and depression associated with aging, neurological disorders, and physical exertion, which has been attributed to increases in brain carnosine and/or brain-derived neurotropic factor (BDNF). BA also provides beneficial effects on cognition, mood, and physical performance during military operations; however, whether BA can attenuate mood disruptions and cognitive dysfunction associated with the anticipatory stress prior to simulated military operations is unknown.Purpose: The present study examined the effects of 14 days of BA (12 g·day-1) supplementation on cognitive function, mood, and circulating BDNF concentrations in recreationally-active, healthy males with limited inflammation and oxidative stress prior to a 24h simulated military operation.Methods: Participants were randomized into BA (n = 10) or placebo (n = 9; PL) for 14 days. Cognitive function, mood, and circulating BDNF were assessed before (PRE) and after (POST) supplementation. Cognition was assessed via multiple object tracking (Neurotracker™), visuomotor reaction time (Dynavision™), mathematical processing (Serial Subtraction Test), and neuropsychological assessments (ANAM™). Mood was assessed using the Profile of Mood States (POMS) questionnaire. After POST testing, subjects underwent a 24h simulated military operation.Results: No change in measures of cognitive function or BDNF concentrations were observed (p > 0.05). However, BA experienced significant reductions (p = 0.046) in subjective feelings of depression, while PL experienced significant reductions (p = 0.021) in feelings of vigor from PRE to POST.Conclusions: High-dose, short-duration BA supplementation does not appear to affect cognitive function or circulating BDNF, but may mitigate the onset of negative mood states in healthy, recreationally-active males prior to a simulated military operation.


Assuntos
Afeto/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo , Cognição , Militares , Estresse Psicológico , beta-Alanina/administração & dosagem , Encéfalo , Fator Neurotrófico Derivado do Encéfalo/sangue , Cognição/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA