Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732002

RESUMO

The escalating prevalence of metabolic disorders, notably type 2 diabetes (T2D) and obesity, presents a critical global health challenge, necessitating deeper insights into their molecular underpinnings. Our study integrates proteomics and metabolomics analyses to delineate the complex molecular landscapes associated with T2D and obesity. Leveraging data from 130 subjects, including individuals with T2D and obesity as well as healthy controls, we elucidate distinct molecular signatures and identify novel biomarkers indicative of disease progression. Our comprehensive characterization of cardiometabolic proteins and serum metabolites unveils intricate networks of biomolecular interactions and highlights differential protein expression patterns between T2D and obesity cohorts. Pathway enrichment analyses reveal unique mechanisms underlying disease development and progression, while correlation analyses elucidate the interplay between proteomics, metabolomics, and clinical parameters. Furthermore, network analyses underscore the interconnectedness of cardiometabolic proteins and provide insights into their roles in disease pathogenesis. Our findings may help to refine diagnostic strategies and inform the development of personalized interventions, heralding a new era in precision medicine and healthcare innovation. Through the integration of multi-omics approaches and advanced analytics, our study offers a crucial framework for deciphering the intricate molecular underpinnings of metabolic disorders and paving the way for transformative therapeutic strategies.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2 , Metabolômica , Obesidade , Proteômica , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangue , Humanos , Obesidade/metabolismo , Obesidade/genética , Proteômica/métodos , Metabolômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade
2.
Langmuir ; 39(42): 14869-14879, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37839073

RESUMO

The interfacial structure and morphology of films spread from hyperbranched polyethylene imine/sodium dodecyl sulfate (PEI/SDS) aggregates at the air/water interface have been resolved for the first time with respect to polyelectrolyte charged density. A recently developed method to form efficient films from the dissociation of aggregates using a minimal quantity of materials is exploited as a step forward in enhancing understanding of the film properties with a view to their future use in technological applications. Interfacial techniques that resolve different time and length scales, namely, ellipsometry, Brewster angle microscopy, and neutron reflectometry, are used. Extended structures of both components are formed under a monolayer of the surfactant with bound polyelectrolytes upon film compression on subphases adjusted to pH 4 or 10, corresponding to high and low charge density of the polyelectrolyte, respectively. A rigid film is related to compact conformation of the PEI in the interfacial structure at pH 4, while it is observed that aggregates remain embedded in mobile films at pH 10. The ability to compact surfactants in the monolayer to the same extent as its maximum coverage in the absence of polyelectrolyte is distinct from the behavior observed for spread films involving linear polyelectrolytes, and intriguingly evidence points to the formation of extended structures over the full range of surface pressures. We conclude that the molecular architecture and charge density can be important parameters in controlling the structures and properties of spread polyelectrolyte/surfactant films, which holds relevance to a range of applications, such as those where PEI is used, including CO2 capture, electronic devices, and gene transfection.

3.
Langmuir ; 37(5): 1902-1912, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33502872

RESUMO

The temperature dependence of nanomechanical properties of adsorbed poly-NIPAm microgel particles prepared by a semibatch polymerization process was investigated in an aqueous environment via indentation-based atomic force microscopy (AFM) methods. Poly-NIPAm microgel particles prepared by the classical batch process were also characterized for comparison. The local mechanical properties were measured between 26 and 35 °C, i.e., in the temperature range of the volume transition. Two different AFM tips with different shapes and end radii were utilized. The nanomechanical properties measured by the two kinds of tips showed a similar temperature dependence of the nanomechanical properties, but the actual values were found to depend on the size of the tip. The results suggest that the semibatch synthesis process results in the formation of more homogeneous microgel particles than the classical batch method. The methodological approach reported in this work is generally applicable to soft surface characterization in situ.

4.
Langmuir ; 35(42): 13614-13623, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31577150

RESUMO

The self-assembly of two oppositely charged diblock copolymers that have a common thermosensitive nonionic block of poly(N-isopropylacrylamide) (pNIPAAM) has been investigated. The effect of the mixing ratio and total polymer concentrations on the self-assembly of the components and on the phase stability of the mixtures was studied by dynamic light scattering, electrophoretic mobility, and turbidimetry measurements in water at 20 °C. The effect of the competing electrostatic and hydrophobic interactions on the nanostructure of negatively charged electrostatically self-assembled micelles bearing a pNIPAAM corona was investigated by small-angle X-ray scattering (SAXS). The electrostatic and hydrophobic interactions were controlled independently by tuning the ionic strength (from pure water to 50 mM NaCl) and the temperature (20-50 °C) of the investigated mixtures. The SAXS data could be fitted by a spherical micelle model, which has a smoothly decaying radial profile and a Gaussian star term that describes the internal structure of the micellar structures and possible attractive interactions between the polymer chains. At high temperature, a cluster structure factor was included for describing the formation of bulky clusters of the formed micelles. At low temperature and ionic strength, the formation of micelles with a coacervate core and hydrated pNIPAAM shell was observed. The structural evolution of the self-assembled micelles with increasing ionic strength and temperature could be followed, and finally at high ionic strength and temperature, the formation of inverted micelles with a hydrophobic core and polyelectrolyte shell could be identified.

5.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623406

RESUMO

Malignant melanoma is one of the most metastatic cancer types, and despite recent success with novel treatment strategies, there is still a group of patients who do not respond to any therapies. Earlier, the prenylation inhibitor hydrophilic bisphosphonate zoledronic acid (ZA) was found to inhibit melanoma growth in vitro, but only a weaker effect was observed in vivo due to its hydrophilic properties. Recently, lipophilic bisphosphonates (such as BPH1222) were developed. Accordingly, for the first time, we compared the effect of BPH1222 to ZA in eight melanoma lines using viability, cell-cycle, clonogenic and spheroid assays, videomicroscopy, immunoblot, and xenograft experiments. Based on 2D and spheroid assays, the majority of cell lines were more sensitive to BPH. The activation of Akt and S6 proteins, but not Erk, was inhibited by BPH. Additionally, BPH had a stronger apoptotic effect than ZA, and the changes of Rheb showed a correlation with apoptosis. In vitro, only M24met cells were more sensitive to ZA than to BPH; however, in vivo growth of M24met was inhibited more strongly by BPH. Here, we present that lipophilic BPH is more effective on melanoma cells than ZA and identify the PI3K pathway, particularly Rheb as an important mediator of growth inhibition.


Assuntos
Antineoplásicos/farmacologia , Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Melanoma/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Melanoma/tratamento farmacológico , Melanoma/etiologia , Melanoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Langmuir ; 34(6): 2312-2323, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29323919

RESUMO

We demonstrate the ability to tune the formation of extended structures in films of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide at the air/water interface through control over the charge/structure of aggregates as well as the ionic strength of the subphase. Our methodology to prepare loaded polyelectrolyte/surfactant films from self-assembled liquid crystalline aggregates exploits their fast dissociation and Marangoni spreading of material upon contact with an aqueous subphase. This process is proposed as a potential new route to prepare cheap biocompatible films for transfer applications. We show that films spread on water from swollen aggregates of low/negative charge have 1:1 charge binding and can be compressed only to a monolayer, beyond which material is lost to the bulk. For films spread on water from compact aggregates of positive charge, however, extended structures of the two components are created upon spreading or upon compression of the film beyond a monolayer. The application of ellipsometry, Brewster angle microscopy, and neutron reflectometry as well as measurements of surface pressure isotherms allow us to reason that formation of extended structures is activated by aggregates embedded in the film. The situation upon spreading on 0.1 M NaCl is different as there is a high concentration of small ions that stabilize loops of the polyelectrolyte upon film compression, yet extended structures of both components are only transient. Analogy of the controlled formation of extended structures in fluid monolayers is made to reservoir dynamics in lung surfactant. The work opens up the possibility to control such film dynamics in related systems through the rational design of particles in the future.

7.
Langmuir ; 34(48): 14652-14660, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30395475

RESUMO

Polyelectrolyte (PE)/surfactant (S) mixtures play a distinguished role in the efficacy of shampoos and toiletries primarily due to the deposition of PE/S precipitates on the hair surface upon dilution of the formulations. The classical interpretation of this phenomenon is a simple composition change during which the system enters the two-phase region. Recent studies, however, indicated that the phase properties of PE/S mixtures could be strongly affected by the applied solution preparation protocols. In the present work, we aimed at studying the impact of dilution on the nonequilibrium aggregate formation in the sodium poly(styrenesulfonate) (NaPSS)/dodecyltrimethylammonium bromide (DTAB)/NaCl system. Mixtures prepared with hundredfold dilution of concentrated NaPSS/DTAB/NaCl solutions in water were compared with those ones made by rapid mixing of dilute NaPSS/NaCl and DTAB/NaCl solutions. The study revealed that the phase-separation concentration range as well as the composition, morphology, and visual appearance of the precipitates were remarkably different in the two cases. These observations clearly demonstrate that the dilution/deposition process is also related to the nonequilibrium phase properties of PE/S systems, which can be used to modulate the efficiency of various commercial applications.

8.
Langmuir ; 34(17): 5020-5029, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29629770

RESUMO

The application of protein deuteration and high flux neutron reflectometry has allowed a comparison of the adsorption properties of lysozyme at the air-water interface from dilute solutions in the absence and presence of high concentrations of two strong denaturants: urea and guanidine hydrochloride (GuHCl). The surface excess and adsorption layer thickness were resolved and complemented by images of the mesoscopic lateral morphology from Brewster angle microscopy. It was revealed that the thickness of the adsorption layer in the absence of added denaturants is less than the short axial length of the lysozyme molecule, which indicates deformation of the globules at the interface. Two-dimensional elongated aggregates in the surface layer merge over time to form an extensive network at the approach to steady state. Addition of denaturants in the bulk results in an acceleration of adsorption and an increase of the adsorption layer thickness. These results are attributed to incomplete collapse of the globules in the bulk from the effects of the denaturants as a result of interactions between remote amino acid residues. Both effects may be connected to an increase of the effective total volume of macromolecules due to the changes of their tertiary structure, that is, the formation of molten globules under the influence of urea and the partial unfolding of globules under the influence of GuHCl. In the former case, the increase of globule hydrophobicity leads to cooperative aggregation in the surface layer during adsorption. Unlike in the case of solutions without denaturants, the surface aggregates are short and wormlike, their size does not change with time, and they do not merge to form an extensive network at the approach to steady state. To the best of our knowledge, these are the first observations of cooperative aggregation in lysozyme adsorption layers.

9.
Philos Trans A Math Phys Eng Sci ; 377(2136)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478205

RESUMO

Faults and damage zone properties control a range of important phenomena, from the hydraulic properties of underground reservoirs to the physics of earthquakes on a larger scale. Here, we investigate the effect of disorder of porous rocks on the spatial structure of damage emerging under compression. Model rock samples are numerically generated by sedimenting particles where the amount of disorder is controlled by the particle size distribution. To obtain damage bands with a sufficiently large length along axis, we performed simulations of 'Brazilian'-type compression tests of cylindrical samples. As failure is approached, damage localization leads to the formation of two conjugate shear bands. The orientation angle of bands to the loading direction increases with disorder, implying a decrease in the internal coefficient of friction. The width of the damage band scales as a power law of the degree of disorder. Inside the damage band, the sample is crushed into a large number of pieces with a power law mass distribution. The shape of fragments undergoes a crossover at a disorder-dependent size from the isotropy of small pieces to the anisotropic flattened form of the large ones. The results provide important constraints in understanding the role of disorder in geological fractures.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.

10.
Langmuir ; 33(23): 5915-5924, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28493707

RESUMO

This work reports a unifying general physical description of the behavior of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface in terms of equilibrium vs nonequilibrium extremes. The poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate system with added NaCl at two different bulk polyelectrolyte concentrations and the poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide system have been systematically examined using a variety of bulk and surface techniques. Similarities in the general behavior are observed for all the investigated systems. Following the slow precipitation of aggregates in the equilibrium two-phase region, which can take several days or even weeks, depletion of surface-active material can result in a surface tension peak. The limiting time scale in the equilibration of the samples is discussed in terms of a balance between those of aggregate growth and settling. Bulk aggregates may spontaneously dissociate and spread material in the form of a kinetically trapped film if they interact with the interface, and a low surface tension then results out of equilibrium conditions. These interactions can occur prior to bulk equilibration while there remains a suspension of aggregates that can diffuse to the interface and following bulk equilibration if the settled precipitate is disturbed. Two clear differences in the behavior of the systems are the position in the isotherm of the surface tension peak and the time it takes to evolve. These features are both rationalized in terms of the nature of the bulk binding interactions.

11.
Soft Matter ; 12(24): 5304-12, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27221521

RESUMO

We describe a new methodology to prepare loaded polyelectrolyte/surfactant films at the air/water interface by exploiting Marangoni spreading resulting from the dynamic dissociation of hydrophobic neutral aggregates dispensed from an aqueous dispersion. The system studied is mixtures of poly(sodium styrene sulfonate) with dodecyl trimethylammonium bromide. Our approach results in the interfacial confinement of more than one third of the macromolecules in the system even though they are not even surface-active without the surfactant. The interfacial stoichiometry of the films was resolved during measurements of surface pressure isotherms in situ for the first time using a new implementation of neutron reflectometry. The interfacial coverage is determined by the minimum surface area reached when the films are compressed beyond a single complete surface layer. The films exhibit linear ripples on a length scale of hundreds of micrometers during the squeezing out of material, after which they behave as perfectly insoluble membranes with consistent stoichiometric charge binding. We discuss our findings in terms of scope for the preparation of loaded membranes for encapsulation applications and in deposition-based technologies.

12.
J Chem Phys ; 144(22): 224502, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27306013

RESUMO

We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.

13.
Phys Rev Lett ; 112(6): 065501, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580692

RESUMO

We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.

14.
Langmuir ; 30(17): 4970-9, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24712308

RESUMO

We rationalize the surface tension behavior and nonequilibrium interfacial characteristics of high molecular weight poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide (NaPSS/DTAB) mixtures with respect to the ionic strength. Excellent agreement is achieved between experimental data and our recent empirical model [Langmuir 2013, 29, 11554], which is based on the lack of colloidal stability of bulk aggregates in the phase separation region and has no free fitting parameters. We show that the size of a surface tension peak positioned at the edge of the phase separation region can be suppressed by the addition of inert electrolyte, which lowers the critical micelle concentration in relation to the phase separation region. Such manipulation of the peak is possible for the 100 ppm NaPSS/DTAB system because there is a high free surfactant concentration in the phase separation region. The close agreement of our model with the experimental data of samples in the phase separation region with respect to the ionic strength indicates that the surface tension behavior can be rationalized in terms of comprehensive precipitation regardless of whether there is a peak or not. The time scale of precipitation for the investigated system is on the order of one month, which emphasizes the need to understand the dynamic changes in the state of bulk aggregation in order to rationalize the surface properties of strongly interacting mixtures; steady state surface properties measured in the interim period will represent samples far from equilibrium. We show also that the surface properties of samples of low ionic strength outside the equilibrium phase separation region can be extreme opposites depending on the sample history, which is attributed to the generation of trapped nonequilibrium states. This work highlights the need to validate the underlying nature of oppositely charged polyelectrolyte/surfactant systems prior to the interpretation of experimental data within an equilibrium framework.


Assuntos
Polímeros/química , Concentração Osmolar , Compostos de Amônio Quaternário/química , Tensão Superficial
15.
Langmuir ; 30(29): 8664-74, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24988363

RESUMO

We discuss different nonequilibrium mechanisms by which bulk aggregates directly modify, and can even control, the interfacial structure and morphology of an oppositely charged polyelectrolyte/surfactant (P/S) mixture. Samples are categorized at the air/water interface with respect to the dynamic changes in the bulk phase behavior, the bulk composition, and the sample history using complementary surface-sensitive techniques. First, we show that bulk aggregates can spontaneously interact with the adsorption layer and are retained in it and that this process occurs most readily for positively charged aggregates with an expanded structure. In this case, key nonequilibrium issues of aggregate dissociation and spreading of surface-active material at the interface have a marked influence on the macroscopic interfacial properties. In a second distinct mechanism, aggregates inherently become trapped at the interface during its creation and lateral flocculation occurs. This irreversible process is most pronounced for aggregates with the lowest charge. A third mechanism involves the deposition of aggregates at interfaces due to their transport under gravity. The specificity of this process at an interface depends on its location and is mediated by density effects in the bulk. The prevalence of each mechanism critically depends on a number of different factors, which are outlined systematically here for the first time. This study highlights the sheer complexity by which aggregates can directly impact the interfacial properties of a P/S mixture. Our findings offer scope for understanding seemingly mysterious irreproducible effects which can compromise the performance of formulations in wide-ranging applications from foams to emulsions and lubricants.


Assuntos
Polietilenos/química , Compostos de Amônio Quaternário/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Adsorção , Ar/análise , Floculação , Cinética , Eletricidade Estática , Tensão Superficial , Termodinâmica , Água/química
16.
Langmuir ; 30(7): 1768-77, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24450736

RESUMO

We study the influence of the particle size on the ability of poly(N-isoprolylacrylamide) microgels to stabilize direct oil-in-water Pickering emulsions. The microgel size is varied from 250 to 760 nm, the cross-linking density being kept constant. The emulsion properties strongly depend on the stabilizer size: increasing the particle size induces an evolution from dispersed drops and fluid emulsions toward strongly adhesive drops and flocculated emulsions. In order to get insight into this dependency, we study how particles adsorb at the interface and we determine the extent of their deformation. We propose a correlation between microgel ability to deform and emulsion macroscopic behavior. Indeed, as the microgels size increases, their internal structure becomes more heterogeneous and so does the polymeric interfacial layer they form. The loss of a uniform dense layer favors bridging between neighboring drops, leading to flocculated and therefore less handleable emulsions.


Assuntos
Resinas Acrílicas/química , Géis/química , Emulsões/química , Óleos/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
17.
Langmuir ; 29(37): 11554-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23964990

RESUMO

Although the surface tension of complex mixtures determines the fate of many important natural processes, the property is notoriously difficult to interpret. Here we announce a new method that successfully predicts the surface tension of two synthetic and one biological polyelectrolyte/surfactant mixtures in the phase-separation region after dynamic changes in the bulk phase behavior have reached completion. The approach is based on the nonequilibrium framework of a lack of colloidal stability of bulk complexes in compositions around the charge match point of the oppositely charged components and requires as input parameters only the surface tension isotherm of the pure surfactant and some bulk measurements of the mixtures; no surface measurements of the mixtures are required. The complexity of the problem is reduced to a single empirical equation. This simplification in our understanding of the surface properties of strongly interacting mixtures involving macromolecules can lead to the optimization of applications involving synthetic polymers and biomacromolecules such as DNA at surfaces.


Assuntos
DNA/química , Poliestirenos/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Coloides/química , Eletrólitos/química , Tensão Superficial
18.
Big Data ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092983

RESUMO

Mass transportation networks of cities or regions are interesting and important to be studied to get a picture of the properties of a somehow better topology and system of transportation. One way to do this lies on the basis of spatial information of stations and routes. As we show however interesting findings can be gained also if one studies the abstract network topologies of these systems. To get these abstract types of networks, we have developed a tool that can extract a network of connected stops from General Transit Feed Specification feeds. As we found during the development, service providers do not follow the specification in coherent ways, so as a kind of postprocessing we have introduced virtual stations to the abstract networks that gather close stops together. We analyze the effect of these new stations on the abstract map as well.

19.
Gels ; 9(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754373

RESUMO

Responsive cationic microgels are a promising building block in several diagnostic and therapeutic applications, like transfection and RNA or enzyme packaging. Although the direct synthesis of cationic poly(N-isopropylacrylamide) (PNIPAm) microgel particles has a long history, these procedures typically resulted in low yield, low incorporation of the cationic comonomer, increased polydispersity, and pure size control. In this study, we investigated the possibility of the post-polymerization modification of P(NIPAm-co-acrylic acid) microgels to prepare primary amine functionalized microgels. To achieve this goal, we used 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) mediated coupling of a diamine to the carboxyl groups. We found that by controlling the EDC excess in the reaction mixture, the amine functionalization of the carboxyl functionalized microgel could be varied and as much as 6-7 mol% amine content could be incorporated into the microgels. Importantly, the reaction was conducted at room temperature in an aqueous medium and it was found to be time efficient, making it a practical and convenient approach for synthesizing primary amine functionalized PNIPAm microgel particles.

20.
J Colloid Interface Sci ; 650(Pt B): 1097-1104, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467638

RESUMO

HYPOTHESIS: Sculpting liquids into different shapes is usually based on the interfacial interactions of functionalized nanoparticles or polymers with specific ligands, leading to exciting material properties due to the combination of the mobility of liquid components with the solid-like characteristic of the arrested liquid/liquid interface. There is an intense interest in novel structured liquids produced from simple compounds with versatile application potentials. Complexes of oppositely charged commercial polyelectrolytes and traditional aliphatic surfactants are good candidates for this goal since they reveal rich structural features and could adsorb at various interfaces. However, they have not been applied yet for structuring liquids. EXPERIMENTS: The interfacial interactions and film formation between aqueous sodium poly(styrene) sulfonate solutions (NaPSS) and hexadecylamine (HDA) solutions in various alkanols were investigated by surface tension measurements and ATR-IR spectroscopy. 3D printing experiments also assessed the robustness of the formed films. FINDINGS: Arrested fatty alcohol/water interfaces were formed due to the interfacial association of NaPSS, HDA, and alkanol molecules, which also act as cosurfactants in the surface region. These solid films enable the synthesis of temperature-sensitive all-in-liquid constructs and offer alternatives to bulk polyion/mixed surfactant assemblies prepared earlier through numerous synthesis steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA