Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Mol Cell ; 79(3): 504-520.e9, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707033

RESUMO

Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.


Assuntos
Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Neoplasias/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Ontologia Genética , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/patologia , Humanos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Distrofias Musculares/enzimologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/química , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais
2.
EMBO Rep ; 25(3): 1589-1622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297188

RESUMO

Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Genes Homeobox , Genoma
3.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499487

RESUMO

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de RNA , RNA Nuclear Pequeno , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Splicing de RNA , Íntrons/genética , Células HeLa , Ligação Proteica , Corpos Enovelados/metabolismo , Células HEK293
4.
Proc Natl Acad Sci U S A ; 120(30): e2210599120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463214

RESUMO

Cardiolipin (CL) is an essential phospholipid for mitochondrial structure and function. Here, we present a small mitochondrial protein, NERCLIN, as a negative regulator of CL homeostasis and mitochondrial ultrastructure. Primate-specific NERCLIN is expressed ubiquitously from the GRPEL2 locus on a tightly regulated low level. NERCLIN overexpression severely disrupts mitochondrial cristae structure and induces mitochondrial fragmentation. Proximity labeling and immunoprecipitation analysis suggested interactions of NERCLIN with CL synthesis and prohibitin complexes on the matrix side of the inner mitochondrial membrane. Lipid analysis indicated that NERCLIN regulates mitochondrial CL content. Furthermore, NERCLIN is responsive to heat stress ensuring OPA1 processing and cell survival. Thus, we propose that NERCLIN contributes to the stress-induced adaptation of mitochondrial dynamics. Our findings add NERCLIN to the group of recently identified small mitochondrial proteins with important regulatory functions.


Assuntos
Cardiolipinas , Proteínas Mitocondriais , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Cardiolipinas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Homeostase
5.
Mass Spectrom Rev ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742660

RESUMO

Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.

6.
Blood ; 142(9): 827-845, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37249233

RESUMO

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Assuntos
Fatores de Transcrição NFATC , Linfócitos T , Humanos , Camundongos , Animais , Linfócitos T/metabolismo , Fatores de Transcrição NFATC/metabolismo , Linfócitos T CD8-Positivos , Glicólise/genética , Mutação
7.
EMBO Rep ; 24(7): e56467, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155564

RESUMO

The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aß1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aß1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aß1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aß1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aß plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Fator H do Complemento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Peptídeos beta-Amiloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
J Biol Chem ; 299(5): 104571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871754

RESUMO

Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells and contributes to their integrity and maintenance have remained elusive. By carrying out EM and live-cell imaging on cultured Madin-Darby canine kidney cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.


Assuntos
Actinas , Proteínas dos Microfilamentos , Pseudópodes , Animais , Cães , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Pseudópodes/metabolismo , Proteínas dos Microfilamentos/metabolismo
9.
Oncologist ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833619

RESUMO

Cancer manifests through a spectrum of mutations, including gene fusions termed oncofusions. These structural alterations influence tumorigenesis across various cancer types. Oncofusions arise primarily from genomic rearrangements and operate through deregulation or hybrid gene formation mechanisms. Notable examples such as BCR::ABL and EWS::FLI1 underscore their clinical significance. Several case studies exemplify the role of identifying and targeting oncofusions in guiding treatment decisions and improving patient outcomes. However, challenges persist in discerning drivers from passenger mutations and addressing acquired resistance. Despite advancements, the complexity of oncofusions warrants further exploration of their full potential as therapeutic targets, requiring a multidisciplinary approach integrating genomics, functional studies, and innovative drug discovery strategies to achieve precision in medicine.

10.
PLoS Pathog ; 18(4): e1010353, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395063

RESUMO

Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication.


Assuntos
Infecções por Parvoviridae , Parvovirus , Linhagem Celular , Cromatina , Humanos , Parvovirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
11.
Hum Genomics ; 17(1): 88, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789421

RESUMO

BACKGROUND: Endometriosis is a common, chronic disease among fertile-aged women. Disease course may be highly invasive, requiring extensive surgery. The etiology of endometriosis remains elusive, though a high level of heritability is well established. Several low-penetrance predisposing loci have been identified, but high-risk susceptibility remains undetermined. Endometriosis is known to increase the risk of epithelial ovarian cancers, especially of endometrioid and clear cell types. Here, we have analyzed a Finnish family where four women have been diagnosed with surgically verified, severely symptomatic endometriosis and two of the patients also with high-grade serous carcinoma. RESULTS: Whole-exome sequencing revealed three rare candidate predisposing variants segregating with endometriosis. The variants were c.1238C>T, p.(Pro413Leu) in FGFR4, c.5065C>T, p.(Arg1689Trp) in NALCN, and c.2086G>A, p.(Val696Met) in NAV2. The only variant predicted deleterious by in silico tools was the one in FGFR4. Further screening of the variants in 92 Finnish endometriosis and in 19 endometriosis-ovarian cancer patients did not reveal additional carriers. Histopathology, positive p53 immunostaining, and genetic analysis supported the high-grade serous subtype of the two tumors in the family. CONCLUSIONS: Here, we provide FGFR4, NALCN, and NAV2 as novel high-risk candidate genes for familial endometriosis. Our results also support the association of endometriosis with high-grade serous carcinoma. Further studies are required to validate the findings and to reveal the exact pathogenesis mechanisms of endometriosis. Elucidating the genetic background of endometriosis defines the etiology of the disease and provides opportunities for expedited diagnostics and personalized treatments.


Assuntos
Carcinoma , Endometriose , Neoplasias Ovarianas , Humanos , Feminino , Idoso , Endometriose/genética , Predisposição Genética para Doença , Sequenciamento do Exoma , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
12.
EMBO Rep ; 23(6): e54041, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384245

RESUMO

Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.


Assuntos
Receptores Proteína Tirosina Quinases , Transdução de Sinais , Membrana Celular/metabolismo , Humanos , Fosforilação , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Tirosina/metabolismo
13.
Cell Mol Life Sci ; 80(12): 361, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971521

RESUMO

Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
14.
Clin Immunol ; 246: 109181, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356849

RESUMO

Nuclear factor κ light-chain enhancer of activated B cells (NF-κB) family of evolutionarily conserved transcription factors are involved in key cellular signaling pathways. Previously, hypogammaglobulinemia and common variable immunodeficiency (CVID)-like phenotypes have been associated with NFKB1 variants and loss-of-function NFKB1 variants have been reported as the most common monogenic cause for CVID among Europeans. Here, we describe a Finnish cohort of NFKB1 carriers consisting of 31 living subjects in six different families carrying five distinct heterozygous variants. In contrast to previous reports, the clinical penetrance was not complete even with advancing age and the prevalence of CVID/hypogammaglobulinemia was significantly lower, whereas (auto)inflammatory manifestations were more common (42% of the total cohort). At current stage of knowledge, routine genetic screening of asymptomatic individuals is not recommended, but counseling of potential adult carriers seems necessary.


Assuntos
Imunodeficiência de Variável Comum , Síndromes de Imunodeficiência , NF-kappa B , Humanos , Agamaglobulinemia , Imunodeficiência de Variável Comum/genética , Seguimentos , Síndromes de Imunodeficiência/genética , NF-kappa B/genética , Subunidade p50 de NF-kappa B/genética
15.
J Clin Immunol ; 43(2): 358-370, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260239

RESUMO

Abnormally high γδ T cell numbers among individuals with atypical SCID have been reported but detailed immunophenotyping and functional characterization of these expanded γδ T cells are limited. We have previously reported atypical SCID phenotype caused by hypomorphic IL2RG (NM_000206.3) c.172C > T;p.(Pro58Ser) variant. Here, we have further investigated the index patient's abnormally large γδ T cell population in terms of function and phenotype by studying IL2RG cell surface expression, STAT tyrosine phosphorylation and blast formation in response to interleukin stimulation, immunophenotyping, TCRvγ sequencing, and target cell killing. In contrast to his âºß T cells, the patient's γδ T cells showed normal IL2RG cell surface expression and normal or enhanced IL2RG-mediated signaling. Vδ2 + population was proportionally increased with a preponderance of memory phenotypes and high overall tendency towards perforin expression. The patient's γδ T cells showed enhanced cytotoxicity towards A549 cancer cells. His TCRvγ repertoire was versatile but sequencing of IL2RG revealed a novel c.534C > A; p.(Phe178Leu) somatic missense variant restricted to γδ T cells. Over time this variant became predominant in γδ T cells, though initially present only in part of them. IL2RG-Pro58Ser/Phe178Leu variant showed higher cell surface expression compared to IL2RG-Pro58Ser variant in stable HEK293 cell lines, suggesting that somatic p.(Phe178Leu) variant may at least partially rescue the pathogenic effect of germline p.(Pro58Ser) variant. In conclusion, our report indicates that expansion of γδ T cells associated with atypical SCID needs further studying and cannot exclusively be deemed as a homeostatic response to low numbers of conventional T cells.


Assuntos
Linfócitos Intraepiteliais , Imunodeficiência Combinada Severa , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Humanos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Linfócitos Intraepiteliais/patologia , Células HEK293 , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subunidade gama Comum de Receptores de Interleucina/genética
16.
Cell ; 133(3): 537-48, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455992

RESUMO

To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all screens, many kinases had a modest but significant effect, apparently due to crosstalk between signaling pathways. However, the strongest effects were found with known regulators and novel components, such as MAP3K10 and DYRK2, which we identified in a mammalian Hedgehog (Hh) signaling screen. DYRK2 directly phosphorylated and induced the proteasome-dependent degradation of the key Hh pathway-regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2 and the known Hh pathway component, GSK3beta. Our results establish kinome expression screening as a highly effective way to identify physiological signaling pathway components and genes involved in pathological signaling crosstalk.


Assuntos
Proteínas Hedgehog/metabolismo , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Expressão Gênica , Biblioteca Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Mamíferos , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transativadores/metabolismo , Células Vero , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Quinases Dyrk
17.
Cell Mol Life Sci ; 79(5): 276, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35504983

RESUMO

ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.


Assuntos
Proteômica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proliferação de Células , Ligantes , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais
18.
Nucleic Acids Res ; 49(19): 10895-10910, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634806

RESUMO

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are two abundant modifications found in mRNAs and ncRNAs that can regulate multiple aspects of RNA biology. They function mainly by regulating interactions with specific RNA-binding proteins. Both modifications are linked to development, disease and stress response. To date, three methyltransferases and two demethylases have been identified that modify adenosines in mammalian mRNAs. Here, we present a comprehensive analysis of the interactomes of these enzymes. PCIF1 protein network comprises mostly factors involved in nascent RNA synthesis by RNA polymerase II, whereas ALKBH5 is closely linked with most aspects of pre-mRNA processing and mRNA export to the cytoplasm. METTL16 resides in subcellular compartments co-inhabited by several other RNA modifiers and processing factors. FTO interactome positions this demethylase at a crossroad between RNA transcription, RNA processing and DNA replication and repair. Altogether, these enzymes share limited spatial interactomes, pointing to specific molecular mechanisms of their regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Metiltransferases/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Reparo do DNA , Replicação do DNA , Ontologia Genética , Células HEK293 , Humanos , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Proteínas Nucleares/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica
19.
Nucleic Acids Res ; 49(4): 1951-1971, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33524141

RESUMO

Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.


Assuntos
Cromatina/metabolismo , Receptores de Glucocorticoides/metabolismo , Sumoilação , Sítios de Ligação , Regulação da Expressão Gênica , Células HEK293 , Humanos , Correpressor 1 de Receptor Nuclear/metabolismo , Coativador 1 de Receptor Nuclear , Mapeamento de Interação de Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacos
20.
J Biol Chem ; 296: 100295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460650

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of ER-stressed neurons in vitro as a general unfolded protein response (UPR) regulator, affecting several UPR pathways simultaneously. Interestingly, MANF does not affect naïve neurons. We hypothesize that MANF regulates UPR signaling toward a mode more compatible with neuronal survival. Screening of MANF interacting proteins from two mammalian cell lines revealed a conserved interactome of 15 proteins including several ER chaperones such as GRP78, GRP170, protein disulfide isomerase family A member 1, and protein disulfide isomerase family A member 6. Further characterization confirmed previously published finding that MANF is a cofactor of GRP78 interacting with its nucleotide binding domain. Using microscale thermophoresis and nuclear magnetic resonance spectroscopy, we discovered that MANF is an ATP binding protein and that ATP blocks the MANF-GRP78 interaction. Interestingly, functional analysis of the antiapoptotic properties of MANF mutants in cultured neurons revealed divergent roles of MANF as a GRP78 cofactor and as an antiapoptotic regulator of UPR. We conclude that the co-factor type interaction with GRP78 is dispensable for the survival-promoting activity of MANF in neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Fatores de Crescimento Neural/genética , Resposta a Proteínas não Dobradas , Animais , Apoptose/genética , Sobrevivência Celular , Neurônios Dopaminérgicos/citologia , Embrião de Mamíferos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Fatores de Crescimento Neural/metabolismo , Cultura Primária de Células , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Mapeamento de Interação de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA