Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(1): 154-164, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166093

RESUMO

PURPOSE: Overweight/obese (OW/OB) patients with metastatic melanoma unexpectedly have improved outcomes with immune checkpoint inhibitors (ICI) and BRAF-targeted therapies. The mechanism(s) underlying this association remain unclear, thus we assessed the integrated molecular, metabolic, and immune profile of tumors, as well as gut microbiome features, for associations with patient body mass index (BMI). EXPERIMENTAL DESIGN: Associations between BMI [normal (NL < 25) or OW/OB (BMI ≥ 25)] and tumor or microbiome characteristics were examined in specimens from 782 patients with metastatic melanoma across 7 cohorts. DNA associations were evaluated in The Cancer Genome Atlas cohort. RNA sequencing from 4 cohorts (n = 357) was batch corrected and gene set enrichment analysis (GSEA) by BMI category was performed. Metabolic profiling was conducted in a subset of patients (x = 36) by LC/MS, and in flow-sorted melanoma tumor cells (x = 37) and patient-derived melanoma cell lines (x = 17) using the Seahorse XF assay. Gut microbiome features were examined in an independent cohort (n = 371). RESULTS: DNA mutations and copy number variations were not associated with BMI. GSEA demonstrated that tumors from OW/OB patients were metabolically quiescent, with downregulation of oxidative phosphorylation and multiple other metabolic pathways. Direct metabolite analysis and functional metabolic profiling confirmed decreased central carbon metabolism in OW/OB metastatic melanoma tumors and patient-derived cell lines. The overall structure, diversity, and taxonomy of the fecal microbiome did not differ by BMI. CONCLUSIONS: These findings suggest that the host metabolic phenotype influences melanoma metabolism and provide insight into the improved outcomes observed in OW/OB patients with metastatic melanoma treated with ICIs and targeted therapies. See related commentary by Smalley, p. 5.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Fatores de Risco , Variações do Número de Cópias de DNA , Obesidade/complicações , Sobrepeso , Melanoma/genética , Melanoma/complicações , Índice de Massa Corporal
2.
Mol Cancer Ther ; 20(3): 500-511, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33361272

RESUMO

Immune-checkpoint inhibitors and adoptive tumor-infiltrating lymphocyte (TIL) therapies have profoundly improved the survival of patients with melanoma. However, a majority of patients do not respond to these agents, and many responders experience disease relapse. Although numerous innovative treatments are being explored to offset the limitations of these agents, novel therapeutic combinations with immunotherapies have the potential to improve patient responses. In this study, we evaluated the antimelanoma activity of immunotherapy combinations with Telaglenastat (CB-839), a potent glutaminase inhibitor (GLSi) that has favorable systemic tolerance. In in vitro TIL:tumor coculture studies, CB-839 treatment improved the cytotoxic activity of autologous TILs on patient-derived melanoma cells. CB-839 treatment decreased the conversion of glutamine to alpha-ketoglutarate (αKGA) more potently in tumor cells versus TILs in these cocultures. These results suggest that CB-839 may improve immune function in a tumor microenvironment by differentially altering tumor and immune cell metabolism. In vivo CB-839 treatment activated melanoma antigen-specific T cells and improved their tumor killing activity in an immune-competent mouse model of adoptive T-cell therapy. Additionally, the combination of CB-839 with anti-PD1 or anti-CTLA4 antibodies increased tumor infiltration by effector T cells and improved the antitumor activity of these checkpoint inhibitors in a high mutation burden mouse melanoma model. Responsiveness to these treatments was also accompanied by an increase of interferon gamma (IFNγ)-associated gene expression in the tumors. Together, these results provide a strong rationale for combining CB-839 with immune therapies to improve efficacy of these treatments against melanoma.


Assuntos
Glutaminase/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Linfócitos T/metabolismo , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Camundongos , Microambiente Tumoral
3.
Neurooncol Adv ; 3(1): vdaa177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575655

RESUMO

BACKGROUND: Recently, we showed that melanoma brain metastases (MBMs) are characterized by increased utilization of the oxidative phosphorylation (OXPHOS) metabolic pathway compared to melanoma extracranial metastases (ECMs). MBM growth was inhibited by a potent direct OXPHOS inhibitor, but observed toxicities support the need to identify alternative therapeutic strategies. Thus, we explored the features associated with OXPHOS to improve our understanding of the pathogenesis and potential therapeutic vulnerabilities of MBMs. METHODS: We applied an OXPHOS gene signature to our cohort of surgically resected MBMs that had undergone RNA-sequencing (RNA-seq) (n = 88). Clustering by curated gene sets identified MBMs with significant enrichment (High-OXPHOS; n = 21) and depletion (Low-OXPHOS; n = 25) of OXPHOS genes. Clinical data, RNA-seq analysis, and immunohistochemistry were utilized to identify significant clinical, molecular, metabolic, and immune associations with OXPHOS in MBMs. Preclinical models were used to further compare melanomas with High- and Low-OXPHOS and for functional validation. RESULTS: High-OXPHOS MBMs were associated with shorter survival from craniotomy compared to Low-OXPHOS MBMs. High-OXPHOS MBMs exhibited an increase in glutamine metabolism, and treatment with the glutaminase inhibitor CB839 improved survival in mice with MAPKi-resistant, High-OXPHOS intracranial xenografts. High-OXPHOS MBMs also exhibited a transcriptional signature of deficient immune activation, which was reversed in B16-F10 intracranial tumors with metformin treatment, an OXPHOS inhibitor. CONCLUSIONS: OXPHOS is associated with distinct clinical, molecular, metabolic, and immune phenotypes in MBMs. These associations suggest rational therapeutic strategies for further testing to improve outcomes in MBM patients.

4.
Clin Cancer Res ; 25(21): 6429-6442, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439581

RESUMO

PURPOSE: The purpose of this study is to determine if inhibition of mitochondrial oxidative phosphorylation (OxPhos) is an effective strategy against MAPK pathway inhibitor (MAPKi)-resistant BRAF-mutant melanomas.Experimental Design: The antimelanoma activity of IACS-010759 (OPi), a novel OxPhos complex I inhibitor, was evaluated in vitro and in vivo. Mechanistic studies and predictors of response were evaluated using molecularly and metabolically stratified melanoma cell lines. 13C-labeling and targeted metabolomics were used to evaluate the effect of OPi on cellular energy utilization. OxPhos inhibition in vivo was evaluated noninvasively by [18F]-fluoroazomycin arabinoside (FAZA) PET imaging. RESULTS: OPi potently inhibited OxPhos and the in vivo growth of multiple MAPKi-resistant BRAF-mutant melanoma models with high OxPhos at well-tolerated doses. In vivo tumor regression with single-agent OPi treatment correlated with inhibition of both MAPK and mTOR complex I activity. Unexpectedly, antitumor activity was not improved by combined treatment with MAPKi in vitro or in vivo. Signaling and growth-inhibitory effects were mediated by LKB1-AMPK axis, and proportional to AMPK activation. OPi increased glucose incorporation into glycolysis, inhibited glucose and glutamine incorporation into the mitochondrial tricarboxylic acid cycle, and decreased cellular nucleotide and amino acid pools. Early changes in [18F]-FAZA PET uptake in vivo, and the degree of mTORC1 pathway inhibition in vitro, correlated with efficacy. CONCLUSIONS: Targeting OxPhos with OPi has significant antitumor activity in MAPKi-resistant, BRAF-mutant melanomas, and merits further clinical investigation as a potential new strategy to overcome intrinsic and acquired resistance to MAPKi in patients.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxidiazóis/uso terapêutico , Piperidinas/uso terapêutico , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Serina-Treonina Quinases TOR/genética
5.
Cancer Discov ; 9(5): 628-645, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787016

RESUMO

There is a critical need to improve our understanding of the pathogenesis of melanoma brain metastases (MBM). Thus, we performed RNA sequencing on 88 resected MBMs and 42 patient-matched extracranial metastases; tumors with sufficient tissue also underwent whole-exome sequencing, T-cell receptor sequencing, and IHC. MBMs demonstrated heterogeneity of immune infiltrates that correlated with prior radiation and post-craniotomy survival. Comparison with patient-matched extracranial metastases identified significant immunosuppression and enrichment of oxidative phosphorylation (OXPHOS) in MBMs. Gene-expression analysis of intracranial and subcutaneous xenografts, and a spontaneous MBM model, confirmed increased OXPHOS gene expression in MBMs, which was also detected by direct metabolite profiling and [U-13C]-glucose tracing in vivo. IACS-010759, an OXPHOS inhibitor currently in early-phase clinical trials, improved survival of mice bearing MAPK inhibitor-resistant intracranial melanoma xenografts and inhibited MBM formation in the spontaneous MBM model. The results provide new insights into the pathogenesis and therapeutic resistance of MBMs. SIGNIFICANCE: Improving our understanding of the pathogenesis of MBMs will facilitate the rational development and prioritization of new therapeutic strategies. This study reports the most comprehensive molecular profiling of patient-matched MBMs and extracranial metastases to date. The data provide new insights into MBM biology and therapeutic resistance.See related commentary by Egelston and Margolin, p. 581.This article is highlighted in the In This Issue feature, p. 565.


Assuntos
Neoplasias Encefálicas/secundário , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Análise do Fluxo Metabólico , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação Oxidativa , Análise de Sequência de RNA/métodos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pigment Cell Melanoma Res ; 31(1): 11-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29049843

RESUMO

Melanomas are metabolically heterogeneous, and they are able to adapt in order to utilize a variety of fuels that facilitate tumor progression and metastasis. The significance of metabolism in melanoma is supported by growing evidence of impact on the efficacy of contemporary therapies for this disease. There are also data to support that the metabolic phenotypes of melanoma cells depend upon contributions from both intrinsic oncogenic pathways and extrinsic factors in the tumor microenvironment. This review summarizes current understanding of the metabolic processes that promote cutaneous melanoma tumorigenesis and progression, the regulation of cancer cell metabolism by the tumor microenvironment, and the impact of metabolic pathways on targeted and immune therapies.


Assuntos
Melanoma/patologia , Melanoma/terapia , Microambiente Tumoral , Animais , Humanos , Melanoma/imunologia , Transdução de Sinais
7.
Cancer Lett ; 255(1): 85-94, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17493745

RESUMO

Constitutive activation of the proinflammatory nuclear factor kappaB (NF-kappaB) transcription factor p65(RelA)/p50 has been implicated in many cancers, including leukemias, lymphomas, and several solid tumors, including lung cancer. In many cases, constitutive NF-kappaB activation can be recapitulated in cell lines isolated from these cancers. To test whether this is the case with non-small cell lung cancer (NSCLC) cell lines, we investigated the basal levels of NF-kappaB proteins, their subcellular distribution, their DNA-binding activities, and the expression of NF-kappaB-responsive genes in 10 NSCLC cell lines. The immortalized human bronchial epithelial cell line BEAS-2B served as a normal control. We found little evidence of substantial constitutive NF-kappaB activation in NSCLC cell lines, although most all of the normal and NSCLC cells possessed inducible NF-kappaB. Our findings provide a resource for the use of particular NSCLC cell lines for the investigation of constitutive and inducible NF-kappaB activity in vitro.


Assuntos
Brônquios/citologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Brônquios/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA/química , DNA/metabolismo , Perfilação da Expressão Gênica , Humanos , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biosci ; 26(2): 271-6, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11426063

RESUMO

Trans-imidazolium (bis imidazole) tetrachloro ruthenate (RuIm) and trans-indazolium (bis indazole) tetrachloro ruthenate (RuInd) are ruthenium coordination complexes, which were first synthesized and exploited for their anticancer activity. These molecules constitute two of the few most effective anticancer ruthenium compounds. The clinical use of these compounds however was hindered due to toxic side effects on the human body. Our present study on topoisomerase II poisoning by these compounds shows that they effectively poison the activity of topoisomerase II by forming a ternary cleavage complex of DNA, drug and topoisomerase II. The thymidine incorporation assays show that the inhibition of cancer cell proliferation correlates with topoisomerase II poisoning. The present study on topoisomerase II poisoning by these two compounds opens a new avenue for renewing further research on these compounds. This is because they could be effective lead candidates for the development of more potent and less toxic ruthenium containing topoisomerase II poisons. Specificity of action on this molecular target may reduce the toxic effects of these ruthenium-containing molecules and thus improve their therapeutic index.


Assuntos
DNA/metabolismo , Imidazóis/farmacologia , Indazóis/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Rutênio/farmacologia , Inibidores da Topoisomerase II , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , DNA/química , DNA Topoisomerases Tipo II/metabolismo , Humanos , Imidazóis/toxicidade , Indazóis/toxicidade , Estrutura Molecular , Conformação de Ácido Nucleico , Compostos Organometálicos/toxicidade , Ratos , Compostos de Rutênio/toxicidade , Timidina/metabolismo , Células Tumorais Cultivadas
9.
EMBO Rep ; 7(3): 291-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16374504

RESUMO

Class I histone deacetylases (HDACs) are ubiquitous enzymes that repress gene expression by deacetylating histone tails and promoting chromatin compaction. Pro-inflammatory agents activate programmes of gene expression through transcription factors such as nuclear factor-kappaB (NF-kappaB), even in the context of ubiquitous HDAC activity. How this is accomplished remains unknown. We found that cells treated with the pro-inflammatory cytokine tumour necrosis factor-alpha rapidly and substantially reduced HDAC1 protein levels without affecting other class I HDACs. In addition, HDAC1 depletion occurred through protein degradation, required IKK2 activity and resulted in increased transcription from both NF-kappaB-associated and unassociated gene promoters. Our study suggests that the activation of programmes of gene expression by pro-inflammatory agents requires global changes in specific critical epigenetic regulators such as HDAC1.


Assuntos
Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Quinase I-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Histona Desacetilase 1 , Histona Desacetilases/classificação , Histona Desacetilases/genética , Humanos , Quinase I-kappa B/genética , Interleucina-1/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Arch Biochem Biophys ; 376(1): 229-35, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10729210

RESUMO

Topoisomerase II is a major molecular target for a number of DNA-binding anticancer drugs. In the present study, we report topoisomerase II inhibition and anticancer activity by four substituted ferrocene derivatives which do not bind to DNA. The first derivative, acetyl-substituted ferrocene (monoacetylferrocene), showed a minor inhibition of topoisomerase II activity along with a consequent inhibition of cancer cell proliferation. The second derivative (diacetylferrocene) showed a higher potency of action compared to the monosubstituted derivative. The third and fourth derivatives, with mono- and disubstituted carboxaldoxime groups (ferrocenecarboxaldoxime and ferrocenedicarboxaldoxime), showed a higher anticancer action and stronger topoisomerase II inhibition. To understand their molecular mechanism of action, cleavage assays were carried out to monitor the drug-induced, topoisomerase II mediated DNA cleavage. The results show that diacetylferrocene and ferrocenedicarboxaldoxime could form an enzyme-drug-DNA ternary complex, called a "cleavage complex," resulting in DNA cleavage. These results along with those of an immunoprecipitation assay indicate that the two compounds interact with topoisomerase II alone and poison its activity by trapping the enzyme and enzyme-cleaved DNA in the covalently closed cleavage complex. The formation of such a complex has numerous genetic implications, which ultimately results in neoplastic cell death.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Ferrosos/farmacologia , Inibidores da Topoisomerase II , Animais , Sítios de Ligação , Bovinos , Divisão Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Compostos Ferrosos/química , Humanos , Metalocenos , Termodinâmica , Células Tumorais Cultivadas
11.
Biochemistry ; 42(22): 6891-903, 2003 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12779344

RESUMO

Development of sequence-specific DNA-binding drugs is an important pharmacological goal, given the fact that numerous existing DNA-directed chemotherapeutic drugs rely on the strength and selectivity of their DNA interactions for therapeutic activity. Among the DNA-binding antibiotics, hairpin polyamides represent the only class of small molecules that can practically bind any predetermined DNA sequence. DNA recognition by these ligands depends on their side-by-side amino acid pairings in the DNA minor groove. Extensive studies have revealed that these molecules show extremely high affinity for sequence-directed, minor groove interaction. However, the specificity of such interactions in the presence of a large selection of sequences such as the human genome is not known. We used the combinatorial selection method restriction endonuclease protection, selection, and amplification (REPSA) to determine the DNA binding specificity of two hairpin polyamides, ImPyPyPy-gamma-PyPyPyPy-beta-Dp and ImPyPyPy-gamma-ImPyPyPy-beta-Dp, in the presence of more than 134 million different sequences. These were verified by restriction endonuclease protection assays and DNase I footprinting analysis. Our data showed that both hairpin polyamides preferentially selected DNA sequences having consensus recognition sites as defined by the Dervan pairing rules. These consensus sequences were rather degenerate, as expected, given that the stacked pyrrole-pyrrole amino acid pairs present in both polyamides are unable to discriminate between A.T and T.A base pairs. However, no individual sequence within these degenerate consensus sequences was preferentially selected by REPSA, indicating that these hairpin polyamides are truly consensus-specific DNA-binding ligands. We also discovered a preference for overlapping consensus binding sites among the sequences selected by the hairpin polyamide ImPyPyPy-gamma-PyPyPyPy-beta-Dp, and confirmed by DNase I footprinting that these complex sites provide higher binding affinity. These data suggest that multiple hairpin polyamides can cooperatively bind to their highest-affinity sites.


Assuntos
Técnicas de Química Combinatória/métodos , DNA/metabolismo , Nylons/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Consenso , DNA/química , Pegada de DNA , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ligantes , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nylons/química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Arch Biochem Biophys ; 401(1): 53-62, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12054487

RESUMO

Topoisomerase II poisoning and anticancer activity by the organometallic compound [RuCl(2)(C(6)H(6))(dmso)] was shown by us in an earlier study [Biochemistry 38 (1999) 4382]. Since high concentrations of this complex were required to achieve either effects, we have synthesized four derivatives of this complex in which the dimethyl sulphoxide group on the ruthenium atom was replaced with pyridine, 3-aminopyridine, p-aminobenzoic acid, and aminoguanidine. Three of these molecules showed enhanced potency of topoisomerase II poisoning and consequently also showed higher anticancer activity in breast and colon carcinoma cells in vitro. Detailed analysis of the molecular action of these compounds on topoisomerase II activity was carried out using the classical relaxation and cleavage activity of the enzyme, which revealed that the compounds poison topoisomerase II by freezing the enzyme and enzyme-cleaved DNA in a ternary "cleavage complex". The cleavage complex is implicated in the anti-neoplastic activity of these compounds. DNA interaction studies showed that these compounds interact with DNA in much the same way as [RuCl(2)(C(6)H(6))(dmso)], by external binding of the DNA helix. This is unlike most other topoisomerase II poisons, which predominantly interact with DNA through intercalation with the double helix.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Organometálicos/farmacologia , Inibidores da Topoisomerase II , Animais , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Divisão Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Dano ao DNA , DNA Topoisomerases Tipo II/química , DNA de Neoplasias/química , DNA de Neoplasias/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Inibidores Enzimáticos/química , Feminino , Humanos , Técnicas In Vitro , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Ratos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA