Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Chem Soc ; 141(32): 12448-12452, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31368708

RESUMO

Protein and peptide interactions are characterized in the liquid state by multidimensional NMR spectroscopy experiments, which can take hours to record. We show that starting from hyperpolarized HDO, two-dimensional (2D) proton correlation maps of a peptide, either free in solution or interacting with liposomes, can be acquired in less than 60 s. In standard 2D NMR spectroscopy without hyperpolarization, the acquisition time required for similar spectral correlations is on the order of hours. This hyperpolarized experiment enables the identification of amino acids featuring solvent-interacting hydrogens and provides fast spectroscopic analysis of peptide conformers. Sensitivity-enhanced 2D proton correlation spectroscopy is a useful and straightforward tool for biochemistry and structural biology, as it does not recur to nitrogen-15 or carbon-13 isotope enrichment.

2.
Faraday Discuss ; 209(0): 67-82, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29989626

RESUMO

Water uptake in vesicles and the subsequent exchange between water protons and amide -NH protons in amino acids can be followed by a new, highly sensitive, type of magnetic resonance spectroscopy: dynamic nuclear polarisation (DNP)-enhanced NMR in the liquid state. Water hydrogen atoms are detected prior to and after their transfer to molecular sites in peptides and proteins featuring highly-accessible proton-exchangeable groups, as is the case for the -NH groups of intrinsically disordered proteins. The detected rates for amide proton-water proton exchange can be modulated by membrane-crossing rates, when a membrane channel is interposed. We hyperpolarised water proton spins via dynamic nuclear polarisation followed by sample dissolution (d-DNP) and transferred the created polarisation to -NH groups with high solvent accessibility in an intrinsically disordered protein domain. This domain is the membrane anchor of c-Src kinase, whose activity controls cell proliferation. The hindrance of effective water proton transfer rate constants observed in free solvent when a membrane-crossing step is involved is discussed. This study aims to assess the feasibility of recently-introduced hyperpolarised (DNP-enhanced) NMR to assess water membrane crossing dynamics.


Assuntos
Canais Iônicos/química , Peptídeos/química , Proteínas/química , Prótons , Água/química , Espectroscopia de Ressonância Magnética
3.
Magn Reson Chem ; 55(6): 579-583, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27859555

RESUMO

Pyruvate membrane crossing and its lactate dehydrogenase-mediated conversion to lactate in cells featuring different levels of expression of membrane monocarboxylate transporters (MCT4) were probed by dissolution dynamic nuclear polarization-enhanced NMR. Hyperpolarized 13 C-1-labeled pyruvate was transferred to suspensions of rodent tumor cell carcinoma, cell line 39. The pyruvate-to-lactate conversion rate monitored by dissolution dynamic nuclear polarization-NMR in carcinoma cells featuring native MCT4 expression level was lower than the rate observed for cells in which the human MCT4 gene was overexpressed. The enzymatic activity of lactate dehydrogenase was also assessed in buffer solutions, following the real-time pyruvate-to-lactate conversion speeds at different enzyme concentrations. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Solubilidade
4.
J Magn Reson ; 364: 107727, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38941676

RESUMO

Hyperpolarized water in dissolution dynamic nuclear polarization (dDNP) experiments has emerged as a promising method for enhancing nuclear magnetic resonance (NMR) signals, particularly in studies of proteins and peptides. Herein, we focus on the application of "proton exchange-doubly relayed" nuclear Overhauser effects (NOE) from hyperpolarized water to achieve positive signal enhancement of methyl groups in the side chain of an alanine-glycine peptide. In particular, we show a cascade hyperpolarization transfer. Initial proton exchange between solvent and amide introduces hyperpolarization into the peptide. Subsequently, intermolecular NOE relays the hyperpolarization first to Ala-Hα and then in a second step to the Ala-CH3 moiety. Both NOEs have negative signs. Hence, the twice-relayed NOE pathway leads to a positive signal enhancement of the methyl group with respect to the thermal equilibrium magnetization. This effect might indicate a way towards hyperpolarized water-based signal enhancement for methyl groups, which are often used for NMR studies of large proteins in solution.

5.
Commun Chem ; 7(1): 112, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755276

RESUMO

Living systems rely on molecular building blocks with low structural symmetry. Therefore, constituent amino acids and nucleotides yield short-lived nuclear magnetic responses to electromagnetic radiation. Magnetic signals are at the basis of molecular imaging, structure determination and interaction studies. In solution state, as the molecular weight of analytes increases, coherences with long lifetimes are needed to yield advantageous through-space magnetisation transfers. Interactions between magnetic nuclei can only be detected provided the lifetimes of spin order are sufficient. In J-coupled pairs of nuclei, long-lived coherences (LLC's) connect states with different spin-permutation symmetry. Here in, we show sustained LLC's in protein Lysozyme, weighing 14.3 kDa, with lifetimes twice as long as those of classical magnetisation for the aliphatic protons of glycine residues. We found for the first time that, in a protein of significant molecular weight, LLC's yield substantial through-space magnetisation transfers: spin-order transfer stemming from LLC's overcame transfers from classical coherences by factors > 2. Furthermore, in agreement with theory, the permutation symmetry of LLC-based transfers allows mapping interacting atoms in the protein structure with respect to the molecular plane of glycine residues in a stereospecific manner. These findings can extend the scope of liquid-state high-resolution biomolecular spectroscopy.

6.
Chem Commun (Camb) ; 59(78): 11672-11675, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695610

RESUMO

Real-time imaging of free-radical formation is important in physical chemistry, biochemistry, and radiobiology, especially for the study of radiation dose-rate effects. Herein, we show for the first time that the formation of free radicals during the time course of a chemical reaction can be imaged through NMR relaxation measurements of water protons in the Earth's magnetic field, in an open-coil spectrometer. The relaxation rate constants of water magnetisation are enhanced as reactions leading to the formation of hydroxyl radicals and oxygen proceed on the timescale of tens of minutes. The reaction rate of iodide-catalysed H2O2 decay was followed by Earth-field 1H NMR relaxation in real time. The relaxivities of the reaction product and several other paramagnetic compounds were determined. Spin-trap molecules were then used to capture ˙OH radical species, thus altering the reaction rate in proportion to the formation of new paramagnetic compounds. Thereby, a new experimental method for magnetic resonance imaging of the formation of intermediate and stable radical species in water is proposed.

7.
J Phys Chem Lett ; 14(18): 4247-4251, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126581

RESUMO

Imaging the molecular kinetics of antioxidants by magnetic resonance can contribute to the mechanistic understanding of therapeutic approaches. Magnetic resonance detection of the response to flashes of oxidative stress requires sequential spectroscopy on the same time scale on which reactive oxygen species are generated. To this effect, we propose a single-polarization multiple-detection stroboscopic experiment. We demonstrate this experiment for the follow-up of glutathione oxidation kinetics. On-the-fly stroboscopic detection minimizes the durations necessary for single acquisitions yet necessitates sustaining of magnetization lifetimes. Long-lived proton spin states (LLS) in the cysteine and glycine residues of glutathione with TLLS up to 16 s are reached. Based on 1H LLS, we followed fast oxidation kinetics in the glutathione redox pair GSH/GSSG. This new detection method allows sampling of long-lived spin order multiple times via small flip-angle excitations. This establishes the ground for the follow-up of redox processes detecting GSH/GSSG kinetics as magnetic-resonance biomarker of FLASH oxidative processes on time scales of tens of seconds.

8.
J Phys Chem Lett ; 13(29): 6731-6736, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35849533

RESUMO

Nuclear magnetization storage, once limited by longitudinal and transverse relaxation lifetimes, T1 and T2, can be prolonged by symmetry-adapted nuclear spin order, i.e. long-lived states (LLS) and long-lived coherences (LLC), which have significantly extended relaxation time constants compared to T1 and T2, respectively. Excitation and/or detection of LLS currently involves pulses covering wide frequency ranges in high-magnetic-field spectrometers. This leads to excitation of unwanted signals that may overlap and interfere with the resonances of interest. Herein, we present a new pulse sequence that converts longitudinal magnetization to LLS and further to detectable magnetization using only frequency-selective pulses. We demonstrate the suitability of this sequence for different J-coupled spin pairs in dipeptide AlaGly and protein Ubiquitin. The newly developed method is adapted for investigations of LLS in complex systems such as proteins and mixtures of metabolites where selected molecular groups are to be investigated separately.


Assuntos
Campos Magnéticos , Proteínas , Dipeptídeos/química , Ubiquitina/química
9.
Chemphyschem ; 12(15): 2729-34, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21882334

RESUMO

The relaxation of long-lived states (LLS) corresponds to the slow return to statistical thermal equilibrium between symmetric and antisymmetric proton spin states. This process is remarkably sensitive to the presence of external spins and can be used to obtain information about partial unfolding of proteins. We detected the appearance of a destabilized conformer of ubiquitin when urea is added to the protein in its native state. This conformer shows increased mobility in the C-terminus, which significantly extends the lifetimes of proton LLS magnetisation in Ser-65. These changes could not be detected by conventional measurements of T(1) and T(2) relaxation times of protons, and would hardly be sensed by carbon-13 or nitrogen-15 relaxation measurements. Conformers with similar dynamic and structural features, as revealed by LLS relaxation times, could be observed, in the absence of urea, in two ubiquitin mutants, L67S and L69S.


Assuntos
Desdobramento de Proteína , Ubiquitina/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Prótons , Fatores de Tempo , Ubiquitina/genética , Ureia/química
10.
Chimia (Aarau) ; 65(9): 652-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22026172

RESUMO

Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On the one hand, we show how to populate long-lived states (LLS) that have long lifetimes T(LLS) which allow one to go beyond the usual limits imposed by the longitudinal relaxation time T1. This makes it possible to extend NMR experiments to longer time-scales. As an application, we demonstrate the extension of the timescale of diffusion measurements by NMR spectroscopy. On the other hand, we review our work on long-lived coherences (LLC), a particular type of coherence between two spin states that oscillates with the frequency of the scalar coupling constant J(IS) and decays with a time constant T(LLC). Again, this time constant T(LLC) can be much longer than the transverse relaxation time T2. By extending the coherence lifetimes, we can narrow the linewidths to an unprecedented extent. J-couplings and residual dipolar couplings (RDCs) in weakly-oriented phases can be measured with the highest precision.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Modelos Teóricos , Fatores de Tempo , Ubiquitina/química
11.
Magn Reson (Gott) ; 2(2): 741-749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905221

RESUMO

Long-lived spin order-based approaches for magnetic resonance rely on the transition between two magnetic environments of different symmetries, one governed by the magnetic field of the spectrometer and the other where this strong magnetic field is inconsequential. Research on the excitation of magnetic-symmetry transitions in nuclear spins is a scientific field that debuted in Southampton in the year 2000. We advanced in this field carrying the baggage of pre-established directions in NMR spectroscopy. We propose to reveal herein the part of discoveries that may have been obscured by our choice to only look at them through the experience of such pre-established directions at the time. The methodological developments that are emphasised herein are the mechanisms of translation between the symmetric and non-symmetric environments with respect to the main magnetic field B0. More specifically, we look again thoroughly at zero-quantum rotations in the starting blocks of long-lived state populations, magnetisation transfers between hyperpolarised heteronuclei, and protons. These pulse sequences seed subsequent magnetic mechanisms that contribute to further applications. For instance, we show how some of the introduced coherence rotations were combined with classical pulse blocks to obtain two-dimensional correlations between protons and heteronuclei. We hope the pulse sequence building blocks discussed herein will open further perspectives for magnetic resonance experiments with long-lived spin order.

12.
Prog Nucl Magn Reson Spectrosc ; 122: 63-75, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33632418

RESUMO

In recent years, new molecular symmetry-based approaches for magnetic resonance have been invented. The implications of these discoveries will be significant for molecular imaging via magnetic resonance, in vitro as well as in vivo, for quantum computing and for other fields. Since the initial observation in 2004 in Southampton that effective spin symmetry can be instilled in a molecule during magnetic resonance experiments, spin states that are resilient to relaxation mechanisms have been increasingly used. Most of these states are related to the nuclear singlet in a pair of J-coupled spins. Tailored relaxation rate constants for magnetization became available in molecules of different sizes and structures, as experimental developments broadened the scope of symmetry-adapted spin states. The ensuing access to timescales longer than the classically-attained ones by circa one order of magnitude allows the study of processes such as slow diffusion or slow exchange that were previously beyond reach. Long-lived states formed by differences between populations of singlets and triplets have overcome the limitations imposed by longitudinal relaxation times (T1) by factors up to 40. Long-lived coherences formed by superpositions of singlets and triplets have overcome the limit of classical transverse coherence (T2) by a factor 9. We present here an overview of the development and applications of long-lived states (LLS) and long-lived coherences (LLC's) and considerations on future perspectives.

13.
Phys Rev Lett ; 104(5): 053001, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366758

RESUMO

Line broadening, which can arise from inhomogeneities or homogeneous relaxation effects that lead to finite lifetimes of quantum states, is the Achilles' heel of many forms of spectroscopy. We show that line broadening may be considerably reduced by exploiting long lifetimes associated with superpositions of quantum states with different symmetry, termed long-lived coherences. In proton NMR of arbitrary molecules (including proteins) in isotropic solution, the slow oscillatory decays of long-lived coherences can yield spectra with very high resolution. This improvement opens the way to high-field magnetic resonance of molecular assemblies that are almost an order of magnitude larger than could be hitherto studied. Coherences between states of different symmetry may be useful in other forms of spectroscopy to cancel unwanted line broadening effects.

14.
J Am Chem Soc ; 131(22): 7498-9, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19441812

RESUMO

We report the first observation of long-lived states (LLS) having lifetimes T(LLS) that exceed the corresponding spin-lattice relaxation times T(1) by more than a factor 6 in a protein. Slow diffusion coefficients characteristic of large biomolecules can be determined by combining LLS methods with moderate pulsed field gradients (PFGs) available on commercial probeheads, as the extension of spin memory reduces the strain on the duration and/or strength of the PFGs. No isotope labeling of the biomolecule is necessary.


Assuntos
Dipeptídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Temperatura Baixa , Difusão , Modelos Moleculares
15.
J Am Chem Soc ; 131(44): 16014-5, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19848401

RESUMO

Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.


Assuntos
Colina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Marcação por Isótopo , Cinética , Magnetismo , Isótopos de Nitrogênio , Prótons , Marcadores de Spin
16.
Sci Rep ; 9(1): 17118, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745146

RESUMO

We introduce a new symmetry-based method for structural investigations of areas surrounding water-exchanging hydrogens in biomolecules by liquid-state nuclear magnetic resonance spectroscopy. Native structures of peptides and proteins can be solved by NMR with fair resolution, with the notable exception of labile hydrogen sites. The reason why biomolecular structures often remain elusive around exchangeable protons is that the dynamics of their exchange with the solvent hampers the observation of their signals. The new spectroscopic method we report allows to locate water-originating hydrogens in peptides and proteins via their effect on nuclear magnetic transitions similar to electronic phosphorescence, long-lived coherences. The sign of long-lived coherences excited in coupled protons can be switched by the experimenter. The different effect of water-exchanging hydrogens on long-lived coherences with opposed signs allows to pinpoint the position of these labile hydrogen atoms in the molecular framework of peptides and proteins.

17.
Med Phys ; 46(10): e726-e734, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31357243

RESUMO

Recently developed short-pulsed laser sources garner high dose-rate beams such as energetic ions and electrons, x rays, and gamma rays. The biological effects of laser-generated ion beams observed in recent studies are different from those triggered by radiation generated using classical accelerators or sources, and this difference can be used to develop new strategies for cancer radiotherapy. High-power lasers can now deliver particles in doses of up to several Gy within nanoseconds. The fast interaction of laser-generated particles with cells alters cell viability via distinct molecular pathways compared to traditional, prolonged radiation exposure. The emerging consensus of recent literature is that the differences are due to the timescales on which reactive molecules are generated and persist, in various forms. Suitable molecular markers have to be adopted to monitor radiation effects, addressing relevant endogenous molecules that are accessible for investigation by noninvasive procedures and enable translation to clinical imaging. High sensitivity has to be attained for imaging molecular biomarkers in cells and in vivo to follow radiation-induced functional changes. Signal-enhanced MRI biomarkers enriched with stable magnetic nuclear isotopes can be used to monitor radiation effects, as demonstrated recently by the use of dynamic nuclear polarization (DNP) for biomolecular observations in vivo. In this context, nanoparticles can also be used as radiation enhancers or biomarker carriers. The radiobiology-relevant features of high dose-rate secondary radiation generated using high-power lasers and the importance of noninvasive biomarkers for real-time monitoring the biological effects of radiation early on during radiation pulse sequences are discussed.


Assuntos
Biomarcadores/metabolismo , Lasers , Imagem Molecular/métodos , Doses de Radiação , Humanos , Fenômenos Magnéticos , Fótons
18.
Chemphyschem ; 9(16): 2414-9, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-18956404

RESUMO

New experiments are described for the determination of very slow diffusion constants by nuclear magnetic resonance (NMR) using long-lived (singlet) states. These experiments are suitable for molecules or conformations featuring a wide range of J-couplings.

19.
J Magn Reson ; 193(1): 110-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18485766

RESUMO

Pulsed Field Gradients (PFGs) have become ubiquitous tools not only for Magnetic Resonance Imaging (MRI), but also for NMR experiments designed to study translational diffusion, for spatial encoding in ultra-fast spectroscopy, for the selection of desirable coherence transfer pathways, for the suppression of solvent signals, and for the elimination of zero-quantum coherences. Some of these experiments can only be carried out if three orthogonal gradients are available, while others can also be implemented using a single gradient, albeit at some expense of performance. This paper discusses some of the advantages of triple- with respect to single-gradient probes. By way of examples we discuss (i) the measurement of small diffusion coefficients making use of the long spin-lattice relaxation times of nuclei with low gyromagnetic ratios gamma such as nitrogen-15, and (ii) the elimination of zero-quantum coherences in Exchange or Nuclear Overhauser Spectroscopy (EXSY or NOESY) experiments, as well as in methods relying on long-lived (singlet) states to study very slow exchange or diffusion processes.

20.
Chemphyschem ; 8(18): 2652-6, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18061913

RESUMO

Different decoupling sequences are tested-using various shaped radio-frequency (RF) pulses-to achieve the longest possible lifetimes of singlet-state populations over the widest possible bandwidths, that is, ranges of offsets and relative chemical shifts of the nuclei involved in the singlet states. The use of sinc or refocusing broadband universal rotation pulses (RE-BURP) for decoupling during the intervals where singlet-state populations are preserved allows one to extend the useful bandwidth with respect to prior state-of-the-art methods based on composite-pulse WALTZ decoupling. The improved sinc decoupling sequences afford a more reliable and sensitive measure of the lifetimes of singlet states in pairs of spins that have widely different chemical shifts, such as the two aromatic protons H(5) and H(6) in uracil. Similar advantages are expected for nucleotides in RNA and DNA. Alternative approaches, in particular frequency-modulated decoupling sequences, also appear to be effective in preserving singlet-state populations, even though the profiles of the apparent relaxation rate constants as a function of the offset are somewhat perturbed. The best decoupling sequences prove their utility in sustaining longer lifetimes of singlet states than previously achieved for the side-chain tyrosine protons in bovine pancreatic trypsin inhibitor (BPTI) at 600 MHz (14.1 T), where the differences of chemical shifts between coupled protons are a challenge.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Nucleotídeos/química , Animais , Aprotinina/química , Composição de Bases , Bovinos , Físico-Química/métodos , DNA/química , Hidrogênio/química , Distribuição Normal , Conformação de Ácido Nucleico , Proteínas/química , Prótons , RNA/química , Espectrofotometria/métodos , Temperatura , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA