Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 40(17): e130, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22618874

RESUMO

Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, several technical obstacles must first be overcome. The major hurdle of RNAi-based therapeutics is to deliver nucleic acids across the cell's plasma membrane. This study demonstrates that exosome vesicles derived from humans can deliver short interfering RNA (siRNA) to human mononuclear blood cells. Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication, i.e. antigen presentation, tolerance development and shuttle RNA (mainly mRNA and microRNA). Having tested different strategies, an optimized method (electroporation) was used to introduce siRNA into human exosomes of various origins. Plasma exosomes (exosomes from peripheral blood) were used as gene delivery vector (GDV) to transport exogenous siRNA to human blood cells. The vesicles effectively delivered the administered siRNA into monocytes and lymphocytes, causing selective gene silencing of mitogen-activated protein kinase 1. These data suggest that human exosomes can be used as a GDV to provide cells with heterologous nucleic acids such as therapeutic siRNAs.


Assuntos
Exossomos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Eletroporação , Humanos , Linfócitos/metabolismo , Monócitos/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção
2.
Eur J Oral Sci ; 118(3): 221-36, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20572855

RESUMO

The aim of this study was to analyse the hitherto largely unknown expression patterns of some specific cellular and extracellular molecules during palate and nasal cavity development. We showed that epithelia of the developing palate and the vomerine epithelium express similar sets of structural proteins. With the exception of keratin 15, which becomes barely detectable in the elevated palatal shelves, nearly all of these proteins become upregulated at the presumptive areas of fusion and in the adhering epithelia of the palate and nasal septum. In vivo and in vitro analyses indicated that reduction in the amount of keratin 15 protein is independent of Tgfbeta-Alk5 signalling. Foxa1 expression also highlighted the regionalization of the palatal and nasal epithelia. Owing to the lack of reliable markers of the palatal periderm, the fate of peridermal cells has been controversial. We identified LewisX/stage-specific embryonic antigen-1 as a specific peridermal marker, and showed that numerous peridermal cells remain trapped in the medial epithelial seam (MES). The fate of these cells is probably apoptosis together with the rest of the MES cells, as we provided strong evidence for this event. Heparan sulphate, chondroitin-6-sulphate, and versican displayed dynamically changing distribution patterns. The hitherto-unknown innervation pattern of the developing palate was revealed. These findings may be of value for unravelling the pathogenesis of palatal clefting.


Assuntos
Proteínas do Citoesqueleto/análise , Proteínas da Matriz Extracelular/análise , Cavidade Nasal/embriologia , Palato/embriologia , Animais , Apoptose/fisiologia , Adesão Celular/fisiologia , Sulfatos de Condroitina/análise , Epitélio/embriologia , Idade Gestacional , Heparitina Sulfato/análise , Fator 3-alfa Nuclear de Hepatócito/análise , Queratina-14/análise , Queratina-15/análise , Queratina-6/análise , Queratina-8/análise , Queratinas/análise , Lamina Tipo A/análise , Antígenos CD15/análise , Substâncias Macromoleculares , Camundongos , Cadeias Pesadas de Miosina/análise , Cavidade Nasal/citologia , Miosina não Muscular Tipo IIA/análise , Palato/citologia , Palato/inervação , Proteínas Serina-Treonina Quinases/análise , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/análise , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta3/análise , Regulação para Cima , Versicanas/análise , Vômer/citologia , Vômer/embriologia
3.
Gene Expr Patterns ; 9(3): 178-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19059364

RESUMO

Tmem16a, Tmem16c, Tmem16f, Tmem16h and Tmem16k belong to the newly identified Tmem16 gene family encoding eight-pass transmembrane proteins. We have analyzed the expression patterns of these genes during mouse cephalic development. In the central nervous system, Tmem16a transcripts were abundant in the ventricular neuroepithelium, whereas the other Tmem16 family members were readily detectable in the subventricular zone and differentiating fields. In the rostral spinal cord, Tmem16f expression was highest in the motor neuron area. In the developing eye, the highest amounts of Tmem16a transcripts were detected in the lens epithelium, hyaloid plexus and outer layer of the retina, while the other family members were abundant in the retinal ganglionic cell layer. Interestingly, throughout development, Tmem16a expression in the inner ear was robust and restricted to a subset of cells within the epithelium, which at later stages formed the organ of Corti. The stria vascularis was particularly rich in Tmem16a and Tmem16f mRNA. Other sites of Tmem16 expression included cranial nerve and dorsal root ganglia, meningeal precursors and the pituitary. Tmem16c and Tmem16f transcripts were also patent in the submandibular autonomic ganglia. A conspicuous feature of Tmem16a was its expression along the walls of blood vessels as well as in cells surrounding the trigeminal and olfactory nerve axons. In organs developing through epithelial-mesenchymal interactions, such as the palate, tooth and tongue, the above five Tmem16 family members showed interesting dynamic expression patterns as development proceeded. Finally and remarkably, osteoblasts and chondrocytes were particularly loaded with Tmem16a, Tmem16c and Tmem16f transcripts.


Assuntos
Canais de Cloreto , Neurogênese/genética , Animais , Anoctamina-1 , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Condrócitos/metabolismo , Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Osteoblastos/metabolismo , Palato/embriologia , Palato/metabolismo , Retina/embriologia , Retina/metabolismo , Língua/embriologia , Língua/metabolismo , Dente/embriologia , Dente/metabolismo
4.
Eur J Oral Sci ; 114(6): 517-23, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17184235

RESUMO

Different sodium-dependent inorganic phosphate (P(i)) uptake mechanisms play a major role in cellular P(i) homeostasis. The function and detailed distribution patterns of the type III Na(+)-phosphate cotransporter, PiT-2, in different organs during development are still largely unknown. We therefore examined the temporospatial expression patterns of Pit2 during murine odontogenesis. Odontoblasts were always devoid of Pit2 expression, whereas a transient, but strong, expression was detected in young secretory ameloblasts. However, the stratum intermedium and, later on, the papillary layer and cells of the subodontoblastic layer, exhibited high levels of Pit2 mRNA, which increased gradually as the tooth matured. Hormonal treatment or P(i) starvation of tooth germs in vitro did not alter Pit2 levels or patterns of expression, indicating mechanisms of regulation different from those of PiT-1 or other cell types. PiT-2 also functions as a retroviral receptor, and functional membrane-localized protein was confirmed throughout the dental papilla/pulp by demonstrating cellular permissiveness to infection by a gammaretrovirus that uses PiT-2 as a receptor. The distinct pattern of Pit2 expression during odontogenesis suggests that its P(i)-transporter function may be important for homeostasis of dental cells and not specifically for mineralization of the dental extracellular matrices. The expression of viral receptors in enamel-forming cells and the dental pulp may be of pathological significance.


Assuntos
Ameloblastos/metabolismo , Papila Dentária/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/biossíntese , Animais , Química Encefálica , Gammaretrovirus/metabolismo , Hibridização In Situ , Camundongos , Receptores Virais/biossíntese , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/fisiologia
5.
Dev Biol ; 285(2): 490-5, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16109396

RESUMO

During palatogenesis, fusion of the palatine shelves is a crucial event, the failure of which results in the birth defect, cleft palate. The fate of the midline epithelial seam (MES), which develops transiently upon contact of the two palatine shelves, is still strongly debated. Three major mechanisms underlying the regression of the MES upon palatal fusion have been proposed: (1) apoptosis has been evidenced by morphological and molecular criteria; (2) epithelial-mesenchymal transformation has been suggested based on ultrastructural and lipophilic dye cell labeling observations; and (3) migration of MES cells toward the oral and nasal areas has been proposed following lipophilic dye cell labeling. To verify whether epithelial-mesenchymal transformation of MES cells takes place during murine palatal fusion, we used the Cre/lox system to genetically mark Sonic hedgehog- and Keratin-14-expressing palatal epithelial cells and to identify their fate in vivo. Our analyses provide conclusive evidence that rules out the occurrence of epithelial-mesenchymal transformation of MES cells.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Mesoderma/citologia , Morfogênese/fisiologia , Palato/embriologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Proteínas de Fluorescência Verde , Proteínas Hedgehog , Imuno-Histoquímica , Queratina-14 , Queratinas/metabolismo , Camundongos , Camundongos Transgênicos , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA