Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Trends Biochem Sci ; 45(11): 992-1003, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32891514

RESUMO

Among inorganic materials, divalent cations modulate thousands of physiological processes that support life. Their roles in protein assembly and aggregation are less known, although they are progressively being brought to light. We review the structural roles of divalent cations here, as well as the novel protein materials that are under development, in which they are used as glue-like agents. More specifically, we discuss how mechanically stable nanoparticles, fibers, matrices, and hydrogels are generated through their coordination with histidine-rich proteins. We also describe how the rational use of divalent cations combined with simple protein engineering offers unexpected and very simple biochemical approaches to biomaterial design that might address unmet clinical needs in precision medicine.


Assuntos
Cátions Bivalentes/química , Proteínas/química , Humanos , Medicina de Precisão , Engenharia de Proteínas
2.
Microb Cell Fact ; 22(1): 81, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098491

RESUMO

BACKGROUND: Recombinant proteins cover a wide range of biomedical, biotechnological, and industrial needs. Although there are diverse available protocols for their purification from cell extracts or from culture media, many proteins of interest such as those containing cationic domains are difficult to purify, a fact that results in low yields of the final functional product. Unfortunately, this issue prevents the further development and industrial or clinical application of these otherwise interesting products. RESULTS: Aiming at improving the purification of such difficult proteins, a novel procedure has been developed based on supplementing crude cell extracts with non-denaturing concentrations of the anionic detergent N-Lauroylsarcosine. The incorporation of this simple step in the downstream pipeline results in a substantial improvement of the protein capture by affinity chromatography, an increase of protein purity and an enhancement of the overall process yield, being the detergent not detectable in the final product. CONCLUSION: By taking this approach, which represents a smart repurposing of N-Lauroylsarcosine applied to protein downstream, the biological activity of the protein is not affected. Being technologically simple, the N-Lauroylsarcosine-assisted protein purification might represent a critical improvement in recombinant protein production with wide applicability, thus smothering the incorporation of promising proteins into the protein market.


Assuntos
Detergentes , Proteínas Recombinantes de Fusão/metabolismo , Extratos Celulares , Proteínas Recombinantes/genética , Cromatografia de Afinidade/métodos
3.
Microb Cell Fact ; 21(1): 203, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199085

RESUMO

The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.


Assuntos
COVID-19 , Vacinas contra Influenza , Vacinas Virais , Animais , COVID-19/prevenção & controle , Humanos , RNA , Vacinação , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas
4.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563346

RESUMO

Under the need for new functional and biocompatible materials for biomedical applications, protein engineering allows the design of assemblable polypeptides, which, as convenient building blocks of supramolecular complexes, can be produced in recombinant cells by simple and scalable methodologies. However, the stability of such materials is often overlooked or disregarded, becoming a potential bottleneck in the development and viability of novel products. In this context, we propose a design strategy based on in silico tools to detect instability areas in protein materials and to facilitate the decision making in the rational mutagenesis aimed to increase their stability and solubility. As a case study, we demonstrate the potential of this methodology to improve the stability of a humanized scaffold protein (a domain of the human nidogen), with the ability to oligomerize into regular nanoparticles usable to deliver payload drugs to tumor cells. Several nidogen mutants suggested by the method showed important and measurable improvements in their structural stability while retaining the functionalities and production yields of the original protein. Then, we propose the procedure developed here as a cost-effective routine tool in the design and optimization of multimeric protein materials prior to any experimental testing.


Assuntos
Nanopartículas , Proteínas , Materiais Biocompatíveis , Tomada de Decisões , Humanos , Nanopartículas/química , Peptídeos , Engenharia de Proteínas/métodos , Proteínas/genética
5.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233074

RESUMO

Cancer maintenance, metastatic dissemination and drug resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest number of CSCs and the poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. The anti-CSC efficacy of up to 17 small drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness features were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes after 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on CSC proliferation and stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSC-enriched mammospheres. Finally, the efficacy of NCS in combination with PTX was analyzed in vivo using an orthotopic mouse model of MDA-MB-231 cells. Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The sole use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination of 8Q and NCS counteracted this pro-CSC activity of PTX while significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth and limited the dissemination of the disease by reducing circulating tumor cells and the incidence of lung metastasis. The combination of 8Q and NCS with PTX at established ratios inhibits both the proliferation of differentiated cancer cells and the viability of CSCs, paving the way for more efficacious TNBC treatments.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Oxiquinolina , Neoplasias de Mama Triplo Negativas/patologia
6.
Trends Biochem Sci ; 42(9): 726-737, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28254353

RESUMO

Bacterial inclusion bodies (IBs) are functional, non-toxic amyloids occurring in recombinant bacteria showing analogies with secretory granules of the mammalian endocrine system. The scientific interest in these mesoscale protein aggregates has been historically masked by their status as a hurdle in recombinant protein production. However, progressive understanding of how the cell handles the quality of recombinant polypeptides and the main features of their intriguing molecular organization has stimulated the interest in inclusion bodies and spurred their use in diverse technological fields. The engineering and tailoring of IBs as functional protein particles for materials science and biomedicine is a good example of how formerly undesired bacterial byproducts can be rediscovered as promising functional materials for a broad spectrum of applications.


Assuntos
Bactérias/metabolismo , Corpos de Inclusão/metabolismo , Bactérias/química , Corpos de Inclusão/química
7.
Exp Eye Res ; 207: 108560, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811914

RESUMO

Current treatment for corneal endothelial dysfunction consists in the replacement of corneal endothelium by keratoplasty. Owing to the scarcity of donor corneas and the increasing number of transplants, alternative treatments such as cell-based therapies are necessary. In this article, we highlight the biological aspects of the cornea and the corneal endothelium, as well as the context that surrounds the need for new alternatives to conventional keratoplasty. We then review some of those experimental treatments in more detail, focusing on the development of the in vitro and preclinical phases of two cell-based therapies: tissue-engineered endothelial keratoplasty (TE-EK) and cell injection. In the case of TE-EK graft construction, we analyse the current progress, considering all the requirements it must meet in order to be functional. Moreover, we discuss the inherent drawbacks of endothelial keratoplasties, which TE-EK grafts should overcome in order to make surgical intervention easier and to improve the outcomes of current endothelial keratoplasties. Finally, we analyse the development of preclinical trials and their limitations in terms of performing an optimal functional evaluation of cell-based therapy, and we conclude by discussing early clinical trials in humans.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Endotélio Corneano/transplante , Distrofia Endotelial de Fuchs/terapia , Engenharia Tecidual , Animais , Humanos , Doadores de Tecidos
8.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830446

RESUMO

Corneal cryopreservation can partially solve the worldwide concern regarding donor cornea shortage for keratoplasties. In this study, human corneas were cryopreserved using two standard cryopreservation protocols that are employed in the Tissue Bank of the Teresa Herrera Hospital (Spain) to store corneas for tectonic keratoplasties (TK protocol) and aortic valves (AV protocol), and two vitrification protocols, VS55 and DP6. Endothelial viability and general corneal state were evaluated to determine the protocol that provides the best results. The potential corneal cryopreservation protocol was studied in detail taking into consideration some cryopreservation-related variables and the endothelial integrity and stroma arrangement of the resulting cryopreserved corneas. TK corneas showed mostly viable endothelial cells, while the others showed few (AV) or none (DP6 and VS55). The corneal structure was well maintained in TK and AV corneas. TK corneas showed endothelial acellular areas surrounded by injured cells and a normal-like stromal fiber arrangement. Cryoprotectant solutions of the TK protocol presented an increasing osmolality and a physiological pH value. Cooling temperature rate of TK protocol was of 1 °C/min to -40 °C and 3 °C/min to -120 °C, and almost all of dimethyl sulfoxide left the tissue after washing. Future studies should be done changing cryopreservation-related variables of the TK protocol to store corneas of optical grade.


Assuntos
Córnea/crescimento & desenvolvimento , Transplante de Córnea/métodos , Criopreservação/normas , Endotélio Corneano/ultraestrutura , Temperatura Baixa , Córnea/patologia , Córnea/ultraestrutura , Transplante de Córnea/efeitos adversos , Dimetil Sulfóxido/farmacologia , Endotélio Corneano/citologia , Endotélio Corneano/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Espanha , Bancos de Tecidos
9.
Small ; 16(30): e2001885, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32578402

RESUMO

Nanoscale protein materials are highly convenient as vehicles for targeted drug delivery because of their structural and functional versatility. Selective binding to specific cell surface receptors and penetration into target cells require the use of targeting peptides. Such homing stretches should be incorporated to larger proteins that do not interact with body components, to prevent undesired drug release into nontarget organs. Because of their low interactivity with human body components and their tolerated immunogenicity, proteins derived from the human microbiome are appealing and fully biocompatible building blocks for the biofabrication of nonreactive, inert protein materials within the nanoscale. Several phage and phage-like bacterial proteins with natural structural roles are produced in Escherichia coli as polyhistidine-tagged recombinant proteins, looking for their organization as discrete, nanoscale particulate materials. While all of them self-assemble in a variety of sizes, the stability of the resulting constructs at 37 °C is found to be severely compromised. However, the fine adjustment of temperature and Zn2+ concentration allows the formation of robust nanomaterials, fully stable in complex media and under physiological conditions. Then, microbiome-derived proteins show promise for the regulatable construction of scaffold protein nanomaterials, which can be tailored and strengthened by simple physicochemical approaches.


Assuntos
Microbiota , Nanopartículas , Sistemas de Liberação de Medicamentos , Humanos , Peptídeos , Engenharia de Proteínas
10.
Haematologica ; 105(3): 741-753, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31248974

RESUMO

One-third of diffuse large B-cell lymphoma patients are refractory to initial treatment or relapse after rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy. In these patients, CXCR4 overexpression (CXCR4+) associates with lower overall and disease-free survival. Nanomedicine pursues active targeting to selectively deliver antitumor agents to cancer cells; a novel approach that promises to revolutionize therapy by dramatically increasing drug concentration in target tumor cells. In this study, we intravenously administered a liganded protein nanocarrier (T22-GFP-H6) targeting CXCR4+ lymphoma cells in mouse models to assess its selectivity as a nanocarrier by measuring its tissue biodistribution in cancer and normal cells. No previous protein-based nanocarrier has been described as specifically targeting lymphoma cells. T22-GFP-H6 achieved a highly selective tumor uptake in a CXCR4+ lymphoma subcutaneous model, as detected by fluorescent emission. We demonstrated that tumor uptake was CXCR4-dependent because pretreatment with AMD3100, a CXCR4 antagonist, significantly reduced tumor uptake. Moreover, in contrast to CXCR4+ subcutaneous models, CXCR4- tumors did not accumulate the nanocarrier. Most importantly, after intravenous injection in a disseminated model, the nanocarrier accumulated and internalized in all clinically relevant organs affected by lymphoma cells with negligible distribution to unaffected tissues. Finally, we obtained antitumor effect without toxicity in a CXCR4+ lymphoma model by administration of T22-DITOX-H6, a nanoparticle incorporating a toxin with the same structure as the nanocarrier. Hence, the use of the T22-GFP-H6 nanocarrier could be a good strategy to load and deliver drugs or toxins to treat specifically CXCR4-mediated refractory or relapsed diffuse large B-cell lymphoma without systemic toxicity.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Prednisona/uso terapêutico , Receptores CXCR4/genética , Rituximab/uso terapêutico , Transdução de Sinais , Distribuição Tecidual , Vincristina/uso terapêutico
11.
Nanotechnology ; 30(11): 115101, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561375

RESUMO

The membrane pore-forming activities of the antimicrobial peptide GWH1 have been evaluated in combination with the CXCR4-binding properties of the peptide T22, in self-assembling protein nanoparticles with high clinical potential. The resulting materials, of 25 nm in size and with regular morphologies, show a dramatically improved cell penetrability into CXCR4+ cells (more than 10-fold) and enhanced endosomal escape (the lysosomal degradation dropping from 90% to 50%), when compared with equivalent protein nanoparticles lacking GWH1. These data reveal that GWH1 retains its potent membrane activity in form of nanostructured protein complexes. On the other hand, the specificity of T22 in the CXCR4 receptor binding is subsequently minimized but, unexpectedly, not abolished by the presence of the antimicrobial peptide. The functional combination T22-GWH1 results in 30% of the nanoparticles entering cells via CXCR4 while also exploiting pore-based uptake. Such functional materials are capable to selectively deliver highly potent cytotoxic drugs upon chemical conjugation, promoting CXCR4-dependent cell death. These data support the further development of GWH1-empowered cell-targeted proteins as nanoscale drug carriers for precision medicines. This is a very promising approach to overcome lysosomal degradation of protein nanostructured materials with therapeutic value.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Portadores de Fármacos/química , Nanopartículas/química , Peptídeos/química , Receptores CXCR4/antagonistas & inibidores , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Endocitose , Endossomos/metabolismo , Humanos , Nanopartículas/ultraestrutura , Peptídeos/metabolismo , Receptores CXCR4/metabolismo
12.
Small ; 14(26): e1800665, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845742

RESUMO

Under the unmet need of efficient tumor-targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22-mRTA-H6) is engineered to self-assemble as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of cytotoxicity. The insoluble version of T22-mRTA-H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22-mRTA-H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self-mediated intracellular drug delivery.


Assuntos
Antineoplásicos/farmacologia , Nanoestruturas/química , Neoplasias/patologia , Receptores CXCR4/metabolismo , Proteínas Recombinantes/farmacologia , Ricina/farmacologia , Sequência de Aminoácidos , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HeLa , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas Recombinantes/química , Ricina/química
13.
Biomacromolecules ; 19(9): 3788-3797, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30052033

RESUMO

Protein materials are rapidly gaining interest in materials sciences and nanomedicine because of their intrinsic biocompatibility and full biodegradability. The controlled construction of supramolecular entities relies on the controlled oligomerization of individual polypeptides, achievable through different strategies. Because of the potential toxicity of amyloids, those based on alternative molecular organizations are particularly appealing, but the structural bases on nonamylogenic oligomerization remain poorly studied. We have applied spectrofluorimetry and spectropolarimetry to identify the conformational conversion during the oligomerization of His-tagged cationic stretches into regular nanoparticles ranging around 11 nm, useful for tumor-targeted drug delivery. We demonstrate that the novel conformation acquired by the proteins, as building blocks of these supramolecular assemblies, shows different extents of compactness and results in a beta structure enrichment that enhances their structural stability. The conformational profiling presented here offers clear clues for understanding and tailoring the process of nanoparticle formation through the use of cationic and histidine rich stretches in the context of protein materials usable in advanced nanomedical strategies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Nanopartículas/química , Multimerização Proteica , Peptídeos Catiônicos Antimicrobianos/genética , Antineoplásicos/administração & dosagem , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Conformação Proteica em Folha beta , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
Nanomedicine ; 14(6): 1777-1786, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777875

RESUMO

Arginine-rich protein motifs have been described as potent cell-penetrating peptides (CPPs) but also as rather specific ligands of the cell surface chemokine receptor CXCR4, involved in the infection by the human immunodeficiency virus (HIV). Polyarginines are commonly used to functionalize nanoscale vehicles for gene therapy and drug delivery, aimed to enhance cell penetrability of the therapeutic cargo. However, under which conditions these peptides do act as either unspecific or specific ligands is unknown. We have here explored the cell penetrability of differently charged polyarginines in two alternative presentations, namely as unassembled fusion proteins or assembled in multimeric protein nanoparticles. By this, we have observed that arginine-rich peptides switch between receptor-mediated and receptor-independent mechanisms of cell penetration. The relative weight of these activities is determined by the electrostatic charge of the construct and the oligomerization status of the nanoscale material, both regulatable by conventional protein engineering approaches.


Assuntos
Arginina/química , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Nanopartículas/química , Receptores CXCR4/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Ligantes , Proteínas Recombinantes de Fusão/genética
15.
Cell Tissue Bank ; 19(4): 507-517, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29700649

RESUMO

The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4',6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.


Assuntos
Albuminas/farmacologia , Criopreservação , Células de Schwann/citologia , Nervo Isquiático/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ratos Endogâmicos Lew , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/efeitos dos fármacos , Coloração e Rotulagem
16.
Nanotechnology ; 28(50): 505102, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29072576

RESUMO

The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Nanopartículas/química , Peptídeos/farmacologia , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/síntese química , Benzilaminas , Ciclamos , Expressão Gênica , Células HeLa , Compostos Heterocíclicos/farmacologia , Humanos , Imidazóis/química , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Tamanho da Partícula , Peptídeos/síntese química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Cloreto de Sódio/química
17.
Nanotechnology ; 28(1): 015102, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27893441

RESUMO

Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.


Assuntos
Amiloide/administração & dosagem , Amiloide/química , Corpos de Inclusão/química , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Amiloide/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Corpos de Inclusão/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/metabolismo , Receptores CXCR4/administração & dosagem , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
18.
FASEB J ; 29(2): 464-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25359494

RESUMO

Although all KRas (protein that in humans is encoded by the KRas gene) point mutants are considered to have a similar prognostic capacity, their transformation and tumorigenic capacities vary widely. We compared the metastatic efficiency of KRas G12V (Kirsten rat sarcoma viral oncogene homolog with valine mutation at codon 12) and KRas G13D (Kirsten rat sarcoma viral oncogene homolog with aspartic mutation at codon 13) oncogenes in an orthotopic colorectal cancer (CRC) model. Following subcutaneous preconditioning, recombinant clones of the SW48 CRC cell line [Kras wild-type (Kras WT)] expressing the KRas G12V or KRas G13D allele were microinjected in the mouse cecum. The percentage of animals developing lymph node metastasis was higher in KRas G12V than in KRas G13D mice. Microscopic, macroscopic, and visible lymphatic foci were 1.5- to 3.0-fold larger in KRas G12V than in KRas G13D mice (P < 0.05). In the lung, only microfoci were developed in both groups. KRas G12V primary tumors had lower apoptosis (7.0 ± 1.2 vs. 7.4 ± 1.0 per field, P = 0.02), higher tumor budding at the invasion front (1.2 ± 0.2 vs. 0.6 ± 0.1, P = 0.04), and a higher percentage of C-X-C chemokine receptor type 4 (CXCR4)-overexpressing intravasated tumor emboli (49.8 ± 9.4% vs. 12.8 ± 4.4%, P < 0.001) than KRas G13D tumors. KRas G12V primary tumors showed Akt activation, and ß5 integrin, vascular endothelial growth factor A (VEGFA), and Serpine-1 overexpression, whereas KRas G13D tumors showed integrin ß1 and angiopoietin 2 (Angpt2) overexpression. The increased cell survival, invasion, intravasation, and specific molecular regulation observed in KRas G12V tumors is consistent with the higher aggressiveness observed in patients with CRC expressing this oncogene.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Angiopoietina-2/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Integrina beta1/metabolismo , Metástase Linfática , Camundongos , Camundongos Nus , Mutação , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Ligação a RNA/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Soft Matter ; 12(14): 3451-60, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26956912

RESUMO

Bacterial Inclusion Bodies (IBs) are amyloidal protein deposits that functionally mimic secretory granules from the endocrine system. When formed by therapeutically relevant proteins, they complement missing intracellular activities in jeopardized cell cultures, offering an intriguing platform for protein drug delivery in substitutive therapies. Despite the therapeutic potential of IBs, their capability to interact with eukaryotic cells, cross the cell membrane and release their functional building blocks into the cytosolic space remains essentially unexplored. We have systematically dissected the process by which bacterial amyloids interact with mammalian cells. An early and tight cell membrane anchorage of IBs is followed by cellular uptake of single or grouped IBs of variable sizes by macropinocytosis. Although an important fraction of the penetrating particles is led to lysosomal degradation, biologically significant amounts of protein are released into the cytosol. In addition, our data suggest the involvement of the bacterial cell folding modulator DnaK in the release of functional proteins from these amyloidal reservoirs. The mechanisms supporting the internalization of disintegrable protein nanoparticles revealed here offer clues to implement novel approaches for protein drug delivery based on controlled protein packaging as bacterial IBs.


Assuntos
Amiloide/metabolismo , Corpos de Inclusão Viral/metabolismo , Pinocitose , Animais , Células COS , Chlorocebus aethiops , Escherichia coli , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Humanos , Lisossomos/metabolismo , Camundongos , Células PC12 , Proteólise , Ratos , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
20.
Microb Cell Fact ; 15: 33, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861699

RESUMO

Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment.


Assuntos
Bactérias/citologia , Preparações Farmacêuticas/metabolismo , Proteínas Recombinantes/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Bactérias/metabolismo , Aprovação de Drogas , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA