Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogenesis ; 13(1): 13, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570533

RESUMO

Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1ß signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.

2.
Cancer Res ; 67(9): 4190-8, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483330

RESUMO

Retrospective studies of breast cancer patients suggest that primary tumor Her-2 overexpression or trastuzumab therapy is associated with a devastating complication: the development of central nervous system (brain) metastases. Herein, we present Her-2 expression trends from resected human brain metastases and data from an experimental brain metastasis assay, both indicative of a functional contribution of Her-2 to brain metastatic colonization. Of 124 archival resected brain metastases from breast cancer patients, 36.2% overexpressed Her-2, indicating an enrichment in the frequency of tumor Her-2 overexpression at this metastatic site. Using quantitative real-time PCR of laser capture microdissected epithelial cells, Her-2 and epidermal growth factor receptor (EGFR) mRNA levels in a cohort of 12 frozen brain metastases were increased up to 5- and 9-fold, respectively, over those of Her-2-amplified primary tumors. Co-overexpression of Her-2 and EGFR was also observed in a subset of brain metastases. We then tested the hypothesis that overexpression of Her-2 increases the colonization of breast cancer cells in the brain in vivo. A subclone of MDA-MB-231 human breast carcinoma cells that selectively metastasizes to brain (231-BR) overexpressed EGFR; 231-BR cells were transfected with low (4- to 8-fold) or high (22- to 28-fold) levels of Her-2. In vivo, in a model of brain metastasis, low or high Her-2-overexpressing 231-BR clones produced comparable numbers of micrometastases in the brain as control transfectants; however, the Her-2 transfectants yielded 3-fold greater large metastases (>50 microm(2); P < 0.001). Our data indicate that Her-2 overexpression increases the outgrowth of metastatic tumor cells in the brain in this model system.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Receptor ErbB-2/biossíntese , Animais , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor ErbB-2/genética , Transfecção , Transplante Heterólogo
3.
Clin Exp Metastasis ; 25(7): 799-810, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18649117

RESUMO

Interactions between tumor cells and the microenvironment are crucial to tumor formation and metastasis. The central nervous system serves as a "sanctuary" site for metastasis, resulting in poor prognosis in diagnosed patients. The incidence of brain metastasis is increasing; however, little is known about interactions between the brain and metastatic cells. Brain pathology was examined in an experimental model system of brain metastasis, using a subline of MDA-MB-231 human breast cancer cells. The results were compared with an analysis of sixteen resected human brain metastases of breast cancer. Experimental metastases formed preferentially in specific brain regions, with a distribution similar to clinical cases. In both the 231-BR model, and in human specimens, Ki67 expression indicated that metastases were highly proliferative (approximately 50%). Little apoptosis was observed in either set of tumors. In the model system, metastases elicited a brain inflammatory response, with extensive reactive gliosis surrounding metastases. Similarly, large numbers of glial cells were found within the inner tumor mass of human brain metastases. In vitro co-cultures demonstrated that glia induced a approximately 5-fold increase in metastatic cell proliferation (P<0.001), suggesting that brain tissue secretes factors conducive to tumor cell growth. Molecules used to signal between tumor cells and the surrounding glia could provide a new avenue of therapeutic targets for brain metastases.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Neuroglia/fisiologia , Adulto , Idoso , Animais , Apoptose , Antígeno CD11b/análise , Movimento Celular , Proliferação de Células , Feminino , Humanos , Antígenos Comuns de Leucócito/análise , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
4.
Clin Cancer Res ; 15(19): 6148-57, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19789319

RESUMO

PURPOSE: As chemotherapy and molecular therapy improve the systemic survival of breast cancer patients, the incidence of brain metastases increases. Few therapeutic strategies exist for the treatment of brain metastases because the blood-brain barrier severely limits drug access. We report the pharmacokinetic, efficacy, and mechanism of action studies for the histone deactylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in a preclinical model of brain metastasis of triple-negative breast cancer. EXPERIMENTAL DESIGN: The 231-BR brain trophic subline of the MDA-MB-231 human breast cancer cell line was injected into immunocompromised mice for pharmacokinetic and metastasis studies. Pharmacodynamic studies compared histone acetylation, apoptosis, proliferation, and DNA damage in vitro and in vivo. RESULTS: Following systemic administration, uptake of [(14)C]vorinostat was significant into normal rodent brain and accumulation was up to 3-fold higher in a proportion of metastases formed by 231-BR cells. Vorinostat prevented the development of 231-BR micrometastases by 28% (P = 0.017) and large metastases by 62% (P < 0.0001) compared with vehicle-treated mice when treatment was initiated on day 3 post-injection. The inhibitory activity of vorinostat as a single agent was linked to a novel function in vivo: induction of DNA double-strand breaks associated with the down-regulation of the DNA repair gene Rad52. CONCLUSIONS: We report the first preclinical data for the prevention of brain metastasis of triple-negative breast cancer. Vorinostat is brain permeable and can prevent the formation of brain metastases by 62%. Its mechanism of action involves the induction of DNA double-strand breaks, suggesting rational combinations with DNA active drugs or radiation.


Assuntos
Neoplasias Encefálicas/prevenção & controle , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Inibidores Enzimáticos/farmacocinética , Feminino , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases , Humanos , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Natl Cancer Inst ; 100(15): 1092-103, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18664652

RESUMO

BACKGROUND: The brain is increasingly being recognized as a sanctuary site for metastatic tumor cells in women with HER2-overexpressing breast cancer who receive trastuzumab therapy. There are no approved or widely accepted treatments for brain metastases other than steroids, cranial radiotherapy, and surgical resection. We examined the efficacy of lapatinib, an inhibitor of the epidermal growth factor receptor (EGFR) and HER2 kinases, for preventing the outgrowth of breast cancer cells in the brain in a mouse xenograft model of brain metastasis. METHODS: EGFR-overexpressing MDA-MB-231-BR (231-BR) brain-seeking breast cancer cells were transfected with an expression vector that contained or lacked the HER2 cDNA and used to examine the effect of lapatinib on the activation (ie, phosphorylation) of cell signaling proteins by immunoblotting, on cell growth by the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and on cell migration using a Boyden chamber assay. The outgrowth of large (ie, >50 microm(2)) and micrometastases was counted in brain sections from nude mice that had been injected into the left cardiac ventricle with 231-BR cells and, beginning 5 days later, treated by oral gavage with lapatinib or vehicle (n = 22-26 mice per treatment group). All statistical tests were two-sided. RESULTS: In vitro, lapatinib inhibited the phosphorylation of EGFR, HER2, and downstream signaling proteins; cell proliferation; and migration in 231-BR cells (both with and without HER2). Among mice injected with 231-BR-vector cells, those treated with 100 mg lapatinib/kg body weight had 54% fewer large metastases 24 days after starting treatment than those treated with vehicle (mean number of large metastases per brain section: 1.56 vs 3.36, difference = 1.80, 95% confidence interval [CI] = 0.92 to 2.68, P < .001), whereas treatment with 30 mg lapatinib/kg body weight had no effect. Among mice injected with 231-BR-HER2 cells, those treated with either dose of lapatinib had 50%-53% fewer large metastases than those treated with vehicle (mean number of large metastases per brain section, 30 mg/kg vs vehicle: 3.21 vs 6.83, difference = 3.62, 95% CI = 2.30 to 4.94, P < .001; 100 mg/kg vs vehicle: 3.44 vs 6.83, difference = 3.39, 95% CI = 2.08 to 4.70, P < .001). Immunohistochemical analysis revealed reduced phosphorylation of HER2 in 231-BR-HER2 cell-derived brain metastases from mice treated with the higher dose of lapatinib compared with 231-BR-HER2 cell-derived brain metastases from vehicle-treated mice (P < .001). CONCLUSIONS: Lapatinib is the first HER2-directed drug to be validated in a preclinical model for activity against brain metastases of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/prevenção & controle , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores ErbB/análise , Quinazolinas/farmacologia , Receptor ErbB-2/análise , Análise de Variância , Animais , Neoplasias Encefálicas/secundário , Neoplasias da Mama/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Immunoblotting , Imunoquímica , Lapatinib , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno , Receptor ErbB-2/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Projetos de Pesquisa , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Res ; 67(24): 11751-9, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089805

RESUMO

Nm23-H1 transcriptionally down-regulates expression of the lysophosphatidic acid receptor EDG2 and this down-regulation is critical for Nm23-H1-mediated motility suppression in vitro. We investigated the effect of altered EDG2 expression on Nm23-H1-mediated metastasis suppression in vivo. Clonal MDA-MB-435-derived tumor cell lines transfected with Nm23-H1 together with either a vector control or EDG2 had similar anchorage-dependent and anchorage-independent growth rates in vitro. However, a 45- and 300-fold inhibition of motility and invasion (P < 0.0001), respectively, was observed in Nm23-H1/vector lines, whereas coexpression of EDG2 restored activity to levels observed in the parental line. Using fluorescently labeled cells and ex vivo microscopy, the capacity of these cells to adhere, arrest, extravasate, and survive in the murine lung over a 24-h time course was measured. Only 5% of Nm23-H1/vector-transfected cells were retained in the murine lung 6 h following tail vein injection; coexpression of EDG2 enhanced retention 8- to 13-fold (P < 0.01). In a spontaneous metastasis assay, the primary tumor size of Nm23-H1/vector and Nm23-H1/EDG2 clones was not significantly different. However, restoration of EDG2 expression augmented the incidence of pulmonary metastasis from 51.9% to 90.4% (P = 2.4 x 10(-5)), comparable with parental MDA-MB-435 cells. To determine the relevance of this model system to human breast cancer, a cohort of breast carcinomas was stained for Nm23-H1 and EDG2 and a statistically significant inverse correlation between these two proteins was revealed (r = -0.73; P = 0.004). The data indicate that Nm23-H1 down-regulation of EDG2 is functionally important to suppression of tumor metastasis.


Assuntos
Neoplasias da Mama/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Metástase Neoplásica/prevenção & controle , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Humanos , Imuno-Histoquímica , Invasividade Neoplásica/prevenção & controle , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA