Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475061

RESUMO

BACKGROUND: Data loss in wearable sensors is an inevitable problem that leads to misrepresentation during diabetes health monitoring. We systematically investigated missing wearable sensors data to get causal insight into the mechanisms leading to missing data. METHODS: Two-week-long data from a continuous glucose monitor and a Fitbit activity tracker recording heart rate (HR) and step count in free-living patients with type 2 diabetes mellitus were used. The gap size distribution was fitted with a Planck distribution to test for missing not at random (MNAR) and a difference between distributions was tested with a Chi-squared test. Significant missing data dispersion over time was tested with the Kruskal-Wallis test and Dunn post hoc analysis. RESULTS: Data from 77 subjects resulted in 73 cleaned glucose, 70 HR and 68 step count recordings. The glucose gap sizes followed a Planck distribution. HR and step count gap frequency differed significantly (p < 0.001), and the missing data were therefore MNAR. In glucose, more missing data were found in the night (23:00-01:00), and in step count, more at measurement days 6 and 7 (p < 0.001). In both cases, missing data were caused by insufficient frequency of data synchronization. CONCLUSIONS: Our novel approach of investigating missing data statistics revealed the mechanisms for missing data in Fitbit and CGM data.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Monitores de Aptidão Física , Glucose , Glicemia , Frequência Cardíaca
2.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610374

RESUMO

After an ACL injury, rehabilitation consists of multiple phases, and progress between these phases is guided by subjective visual assessments of activities such as running, hopping, jump landing, etc. Estimation of objective kinetic measures like knee joint moments and GRF during assessment can help physiotherapists gain insights on knee loading and tailor rehabilitation protocols. Conventional methods deployed to estimate kinetics require complex, expensive systems and are limited to laboratory settings. Alternatively, multiple algorithms have been proposed in the literature to estimate kinetics from kinematics measured using only IMUs. However, the knowledge about their accuracy and generalizability for patient populations is still limited. Therefore, this article aims to identify the available algorithms for the estimation of kinetic parameters using kinematics measured only from IMUs and to evaluate their applicability in ACL rehabilitation through a comprehensive systematic review. The papers identified through the search were categorized based on the modelling techniques and kinetic parameters of interest, and subsequently compared based on the accuracies achieved and applicability for ACL patients during rehabilitation. IMUs have exhibited potential in estimating kinetic parameters with good accuracy, particularly for sagittal movements in healthy cohorts. However, several shortcomings were identified and future directions for improvement have been proposed, including extension of proposed algorithms to accommodate multiplanar movements and validation of the proposed techniques in diverse patient populations and in particular the ACL population.


Assuntos
Lesões do Ligamento Cruzado Anterior , Tomada de Decisão Clínica , Humanos , Algoritmos , Nível de Saúde , Cinética
3.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631813

RESUMO

Integrated Ultra-wideband (UWB) and Magnetic Inertial Measurement Unit (MIMU) sensor systems have been gaining popularity for pedestrian tracking and indoor localization applications, mainly due to their complementary error characteristics that can be exploited to achieve higher accuracies via a data fusion approach. These integrated sensor systems have the potential for improving the ambulatory 3D analysis of human movement (estimating 3D kinematics of body segments and joints) over systems using only on-body MIMUs. For this, high accuracy is required in the estimation of the relative positions of all on-body integrated UWB/MIMU sensor modules. So far, these integrated UWB/MIMU sensors have not been reported to have been applied for full-body ambulatory 3D analysis of human movement. Also, no review articles have been found that have analyzed and summarized the methods integrating UWB and MIMU sensors for on-body applications. Therefore, a comprehensive analysis of this technology is essential to identify its potential for application in 3D analysis of human movement. This article thus aims to provide such a comprehensive analysis through a structured technical review of the methods integrating UWB and MIMU sensors for accurate position estimation in the context of the application for 3D analysis of human movement. The methods used for integration are all summarized along with the accuracies that are reported in the reviewed articles. In addition, the gaps that are required to be addressed for making this system applicable for the 3D analysis of human movement are discussed.


Assuntos
Movimento , Pedestres , Humanos , Tecnologia
4.
J Neuroeng Rehabil ; 19(1): 2, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016694

RESUMO

BACKGROUND: Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. METHOD: Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. RESULTS: Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. CONCLUSION: Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093 .


Assuntos
Transtornos Motores , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Humanos , Movimento , Acidente Vascular Cerebral/complicações , Extremidade Superior , Articulação do Punho
5.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161701

RESUMO

A Drift-Free 3D Orientation and Displacement estimation method (DFOD) based on a single inertial measurement unit (IMU) is proposed and validated. Typically, body segment orientation and displacement methods rely on a constant- or zero-velocity point to correct for drift. Therefore, they are not easily applicable to more proximal segments than the foot. DFOD uses an alternative single sensor drift reduction strategy based on the quasi-cyclical nature of many human movements. DFOD assumes that the quasi-cyclical movement occurs in a quasi-2D plane and with an approximately constant cycle average velocity. DFOD is independent of a constant- or zero-velocity point, a biomechanical model, Kalman filtering or a magnetometer. DFOD reduces orientation drift by assuming a cyclical movement, and by defining a functional coordinate system with two functional axes. These axes are based on the mean acceleration and rotation axes over multiple complete gait cycles. Using this drift-free orientation estimate, the displacement of the sensor is computed by again assuming a cyclical movement. Drift in displacement is reduced by subtracting the mean value over five gait cycle from the free acceleration, velocity, and displacement. Estimated 3D sensor orientation and displacement for an IMU on the lower leg were validated with an optical motion capture system (OMCS) in four runners during constant velocity treadmill running. Root mean square errors for sensor orientation differences between DFOD and OMCS were 3.1 ± 0.4° (sagittal plane), 5.3 ± 1.1° (frontal plane), and 5.0 ± 2.1° (transversal plane). Sensor displacement differences had a root mean square error of 1.6 ± 0.2 cm (forward axis), 1.7 ± 0.6 cm (mediolateral axis), and 1.6 ± 0.2 cm (vertical axis). Hence, DFOD is a promising 3D drift-free orientation and displacement estimation method based on a single IMU in quasi-cyclical movements with many advantages over current methods.


Assuntos
Aceleração , Corrida , Fenômenos Biomecânicos , Humanos , Movimento , Rotação
6.
J Neuroeng Rehabil ; 18(1): 37, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596942

RESUMO

BACKGROUND: The foot progression angle is an important measure used to help patients reduce their knee adduction moment. Current measurement systems are either lab-bounded or do not function in all environments (e.g., magnetically distorted). This work proposes a novel approach to estimate foot progression angle using a single foot-worn inertial sensor (accelerometer and gyroscope). METHODS: The approach uses a dynamic step frame that is recalculated for the stance phase of each step to calculate the foot trajectory relative to that frame, to minimize effects of drift and to eliminate the need for a magnetometer. The foot progression angle (FPA) is then calculated as the angle between walking direction and the dynamic step frame. This approach was validated by gait measurements with five subjects walking with three gait types (normal, toe-in and toe-out). RESULTS: The FPA was estimated with a maximum mean error of ~ 2.6° over all gait conditions. Additionally, the proposed inertial approach can significantly differentiate between the three different gait types. CONCLUSION: The proposed approach can effectively estimate differences in FPA without requiring a heading reference (magnetometer). This work enables feedback applications on FPA for patients with gait disorders that function in any environment, i.e. outside of a gait lab or in magnetically distorted environments.


Assuntos
Análise da Marcha/instrumentação , Dispositivos Eletrônicos Vestíveis , Acelerometria/instrumentação , Adulto , Fenômenos Biomecânicos , Pé/fisiopatologia , Humanos , Masculino
7.
J Neuroeng Rehabil ; 18(1): 144, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560898

RESUMO

BACKGROUND: The cause of smoothness deficits as a proxy for quality of movement post stroke is currently unclear. Previous simulation analyses showed that spectral arc length (SPARC) is a valid metric for investigating smoothness during a multi-joint goal-directed reaching task. The goal of this observational study was to investigate how SPARC values change over time, and whether SPARC is longitudinally associated with the recovery from motor impairments reflected by the Fugl-Meyer motor assessment of the upper extremity (FM-UE) in the first 6 months after stroke. METHODS: Forty patients who suffered a first-ever unilateral ischemic stroke (22 males, aged 58.6 ± 12.5 years) with upper extremity paresis underwent kinematic and clinical measurements in weeks 1, 2, 3, 4, 5, 8, 12, and 26 post stroke. Clinical measures included amongst others FM-UE. SPARC was obtained by three-dimensional kinematic measurements using an electromagnetic motion tracking system during a reach-to-grasp movement. Kinematic assessments of 12 healthy, age-matched individuals served as reference. Longitudinal linear mixed model analyses were performed to determine SPARC change over time, compare smoothness in patients with reference values of healthy individuals, and establish the longitudinal association between SPARC and FM-UE scores. RESULTS: SPARC showed a significant positive longitudinal association with FM-UE (B: 31.73, 95%-CI: [27.27 36.20], P < 0.001), which encompassed significant within- and between-subject effects (B: 30.85, 95%-CI: [26.28 35.41], P < 0.001 and B: 50.59, 95%-CI: [29.97 71.21], P < 0.001, respectively). Until 5 weeks post stroke, progress of time contributed significantly to the increase in SPARC and FM-UE scores (P < 0.05), whereafter they levelled off. At group level, smoothness was lower in patients who suffered a stroke compared to healthy subjects at all time points (P < 0.05). CONCLUSIONS: The present findings show that, after stroke, recovery of smoothness in a multi-joint reaching task and recovery from motor impairments are longitudinally associated and follow a similar time course. This suggests that the reduction of smoothness deficits quantified by SPARC is a proper objective reflection of recovery from motor impairment, as reflected by FM-UE, probably driven by a common underlying process of spontaneous neurological recovery early post stroke.


Assuntos
Transtornos Motores , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Paresia/etiologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Extremidade Superior
8.
J Neuroeng Rehabil ; 18(1): 154, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702281

RESUMO

BACKGROUND: Smoothness is commonly used for measuring movement quality of the upper paretic limb during reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a 'valid' metric has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude whether they are valid for measuring smoothness. Our objective was to provide a recommendation for metrics that reflect smoothness after stroke based on: (1) a systematic review of smoothness metrics for reaching used in stroke research, (2) the mathematical description of the metrics, and (3) the response of metrics to simulated changes associated with smoothness deficits in the reaching profile. METHODS: The systematic review was performed by screening electronic databases using combined keyword groups Stroke, Reaching and Smoothness. Subsequently, each metric identified was assessed with mathematical criteria regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) being based on rate of change of position, and (d) not being a linear transform of other smoothness metrics. The resulting metrics were tested for their response to simulated changes in reaching using models of velocity profiles with varying reaching distances and durations, harmonic disturbances, noise, and sub-movements. Two reaching tasks were simulated; reach-to-point and reach-to-grasp. The metrics that responded as expected in all simulation analyses were considered to be valid. RESULTS: The systematic review identified 32 different smoothness metrics, 17 of which were excluded based on mathematical criteria, and 13 more as they did not respond as expected in all simulation analyses. Eventually, we found that, for reach-to-point and reach-to-grasp movements, only Spectral Arc Length (SPARC) was found to be a valid metric. CONCLUSIONS: Based on this systematic review and simulation analyses, we recommend the use of SPARC as a valid smoothness metric in both reach-to-point and reach-to-grasp tasks of the upper limb after stroke. However, further research is needed to understand the time course of smoothness measured with SPARC for the upper limb early post stroke, preferably in longitudinal studies.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Benchmarking , Fenômenos Biomecânicos , Humanos , Movimento , Acidente Vascular Cerebral/complicações , Extremidade Superior
9.
Sensors (Basel) ; 21(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34502845

RESUMO

BACKGROUND: Closed loop bi-hormonal artificial pancreas systems, such as the artificial pancreas (AP™) developed by Inreda Diabetic B.V., control blood glucose levels of type 1 diabetes mellitus patients via closed loop regulation. As the AP™ currently does not classify postures and movements to estimate metabolic energy consumption to correct hormone administration levels, considerable improvements to the system can be made. Therefore, this research aimed to investigate the possibility to use the current system to identify several postures and movements. METHODS: seven healthy participants took part in an experiment where sequences of postures and movements were performed to train and assess a computationally sparing algorithm. RESULTS: Using accelerometers, one on the hip and two on the abdomen, user-specific models achieved classification accuracies of 86.5% using only the hip sensor and 87.3% when including the abdomen sensors. With additional accelerometers on the sternum and upper leg for identification, 90.0% of the classified postures and movements were correct. CONCLUSIONS: The current hardware configuration of the AP™ poses no limitation to the identification of postures and movements. If future research shows that identification can still be done accurately in a daily life setting, this algorithm may be an improvement for the AP™ to sense physical activity.


Assuntos
Diabetes Mellitus Tipo 1 , Pâncreas Artificial , Dispositivos Eletrônicos Vestíveis , Algoritmos , Glicemia , Humanos , Insulina , Movimento , Postura
10.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799717

RESUMO

Cardiac surgery patients infrequently mobilize during their hospital stay. It is unclear for patients why mobilization is important, and exact progress of mobilization activities is not available. The aim of this study was to select and evaluate accelerometers for objective qualification of in-hospital mobilization after cardiac surgery. Six static and dynamic patient activities were defined to measure patient mobilization during the postoperative hospital stay. Device requirements were formulated, and the available devices reviewed. A triaxial accelerometer (AX3, Axivity) was selected for a clinical pilot in a heart surgery ward and placed on both the upper arm and upper leg. An artificial neural network algorithm was applied to classify lying in bed, sitting in a chair, standing, walking, cycling on an exercise bike, and walking the stairs. The primary endpoint was the daily amount of each activity performed between 7 a.m. and 11 p.m. The secondary endpoints were length of intensive care unit stay and surgical ward stay. A subgroup analysis for male and female patients was planned. In total, 29 patients were classified after cardiac surgery with an intensive care unit stay of 1 (1 to 2) night and surgical ward stay of 5 (3 to 6) nights. Patients spent 41 (20 to 62) min less time in bed for each consecutive hospital day, as determined by a mixed-model analysis (p < 0.001). Standing, walking, and walking the stairs increased during the hospital stay. No differences between men (n = 22) and women (n = 7) were observed for all endpoints in this study. The approach presented in this study is applicable for measuring all six activities and for monitoring postoperative recovery of cardiac surgery patients. A next step is to provide feedback to patients and healthcare professionals, to speed up recovery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Caminhada , Acelerometria , Feminino , Hospitais , Humanos , Tempo de Internação , Masculino
11.
Crit Care ; 24(1): 628, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126902

RESUMO

BACKGROUND: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population ("Holland study") and pooled data with our previous work ("Australian study") to estimate potential clinical effects in a larger group. METHODS: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. RESULTS: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6-12.2] versus 10.5 [5.3-25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0-14.5] versus 14.0 [9.0-19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). CONCLUSION: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. TRIAL REGISTRATION: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944 .


Assuntos
Estimulação Elétrica/métodos , Músculos Respiratórios/inervação , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estimulação Elétrica/instrumentação , Estudos de Viabilidade , Feminino , Mortalidade Hospitalar/tendências , Humanos , Masculino , Medicare/estatística & dados numéricos , Medicare/tendências , Modelos de Riscos Proporcionais , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Músculos Respiratórios/fisiopatologia , Estudos Retrospectivos , Estados Unidos
12.
J Neuroeng Rehabil ; 17(1): 45, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183867

RESUMO

BACKGROUND: Parkinson's disease (PD) and essential tremor (ET) are neurodegenerative diseases characterized by movement deficits. Especially in PD, maintaining cyclic movement can be significantly disturbed due to pathological changes in the basal ganglia and the cerebellum. Providing external cues improves timing of these movements in PD and also affects ET. The aim of this study is to determine differences in cortical activation patterns in PD and ET patients during externally and internally cued movements. METHODS: Eleven PD patients, twelve ET patients, OFF tremor suppressing medication, and nineteen age-matched healthy controls (HC) were included and asked to perform a bimanual tapping task at two predefined cue frequencies. The auditory cue, a metronome sound presented at 2 or 4 Hz, was alternately switched on and off every 30 s. Tapping at two different frequencies were used since it is expected that different brain networks are involved at different frequencies as has been shown in previous studies. Cortical activity was recorded using a 64-channel EEG cap. To establish the cortical activation pattern in each group, the task related power (TRP) was calculated for each subject. For inter-groups analysis, EEG electrodes for divided into 5 different areas. RESULTS: Inter-group analysis revealed significant differences in areas responsible for motor planning, organization and regulation and involved in initiation, maintenance, coordination and planning of complex sequences of movements. Within the area of the primary motor cortex the ET group showed a significantly lower TRP than the HC group. In the area responsible for combining somatosensory, auditory and visual information both patient groups had a higher TRP than the HC group. CONCLUSIONS: Different neurological networks are involved during cued and non-cued movements in ET, PD and HC. Distinct cortical activation patterns were revealed using task related power calculations. Different activation patterns were revealed during the 2 and 4 Hz tapping task indicating different strategies to execute movements at these rates. The results suggest that a including a cued/non-cued tapping task during clinical decision making could be a valuable tool in an objective diagnostic protocol.


Assuntos
Encéfalo/fisiopatologia , Sinais (Psicologia) , Tremor Essencial/fisiopatologia , Destreza Motora/fisiologia , Doença de Parkinson/fisiopatologia , Idoso , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Sensors (Basel) ; 20(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707635

RESUMO

Relative orientation estimation between the hand and its fingers is important in many applications, such as virtual reality (VR), augmented reality (AR) and rehabilitation. It is still quite a big challenge to do the estimation by only exploiting inertial measurement units (IMUs) because of the integration drift that occurs in most approaches. When the hand is functionally used, there are many instances in which hand and finger tips move together, experiencing almost the same angular velocities, and in some of these cases, almost the same accelerations are measured in different 3D coordinate systems. Therefore, we hypothesize that relative orientations between the hand and the finger tips can be adequately estimated using 3D IMUs during such designated events (DEs) and in between these events. We fused this extra information from the DEs and IMU data with an extended Kalman filter (EKF). Our results show that errors in relative orientation can be smaller than five degrees if DEs are constantly present and the linear and angular movements of the whole hand are adequately rich. When the DEs are partially available in a functional water-drinking task, the orientation error is smaller than 10 degrees.


Assuntos
Algoritmos , Dedos , Mãos , Movimento , Aceleração , Fenômenos Biomecânicos , Humanos
14.
Sensors (Basel) ; 20(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171858

RESUMO

As an alternative to force plates, an inertial measurement unit (IMU) at the pelvis can offer an ambulatory method for measuring total center of mass (CoM) accelerations and, thereby, the ground reaction forces (GRF) during gait. The challenge here is to estimate the 3D components of the GRF. We employ a calibration procedure and an error state extended Kalman filter based on an earlier work to estimate the instantaneous 3D GRF for different over-ground walking patterns. The GRF were then expressed in a body-centric reference frame, to enable an ambulatory setup not related to a fixed global frame. The results were validated with ForceShoesTM, and the average error in estimating instantaneous shear GRF was 5.2 ± 0.5% of body weight across different variable over-ground walking tasks. The study shows that a single pelvis IMU can measure 3D GRF in a minimal and ambulatory manner during over-ground gait.


Assuntos
Análise da Marcha/métodos , Caminhada , Aceleração , Fenômenos Biomecânicos , Humanos , Pelve
15.
Sensors (Basel) ; 20(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846958

RESUMO

Precise and objective assessments of upper limb movement quality after strokes in functional task conditions are an important prerequisite to improve understanding of the pathophysiology of movement deficits and to prove the effectiveness of interventions. Herein, a wearable inertial sensing system was used to capture movements from the fingers to the trunk in 10 chronic stroke subjects when performing reach-to-grasp activities with the affected and non-affected upper limb. It was investigated whether the factors, tested arm, object weight, and target height, affect the expressions of range of motion in trunk compensation and flexion-extension of the elbow, wrist, and finger during object displacement. The relationship between these metrics and clinically measured impairment was explored. Nine subjects were included in the analysis, as one had to be excluded due to defective data. The tested arm and target height showed strong effects on all metrics, while an increased object weight showed effects on trunk compensation. High inter- and intrasubject variability was found in all metrics without clear relationships to clinical measures. Relating all metrics to each other resulted in significant negative correlations between trunk compensation and elbow flexion-extension in the affected arm. The findings support the clinical usability of sensor-based motion analysis.


Assuntos
Monitorização Fisiológica/métodos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Movimento , Extremidade Superior , Articulação do Punho
16.
J Neuroeng Rehabil ; 16(1): 54, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064378

RESUMO

BACKGROUND: The basal ganglia and cerebellum are brain structures involved in movement initiation, execution and termination. They are thought to be involved in the tremor generation and movement deficits in Parkinson's disease (PD) and essential tremor (ET). Especially in PD, maintaining cyclic movement, such as walking or tapping can be significantly disturbed. Providing external cues improves timing of these movements in PD but its effect on ET has not yet been studied in depth. The aim of this study is to evaluate the usefulness of a bimanual tapping task as a tool during clinical decision making. METHOD: Hand movements and tremor was recorded using accelerometers and EMG (m. extensor carpi ulnaris) from PD and ET patients and healthy controls during a bimanual tapping task as a way to distinguish PD from ET. All subjects performed the tapping task at two different frequencies, 2 Hz and 4 Hz, with and without the presence of auditory cues. RESULTS: No significant intra-group differences were found in the patient groups. Acceleration data revealed significantly less accurate tapping and more variable tapping in PD than in ET and healthy controls. ET subjects tapped less accurate and with a greater variability than healthy controls during the 4 Hz tapping task. Most interestingly the tapping accuracy improved in PD patients when kinetic tremor was recorded with EMG during the task. CONCLUSION: Providing ET and PD patients with an external cue results in different tapping performances between patient groups and healthy controls. Furthermore, the findings suggest that kinetic tremor in PD enables patients to perform the task with a greater accuracy. So far this has not been shown in other studies.


Assuntos
Destreza Motora/fisiologia , Doença de Parkinson/fisiopatologia , Idoso , Sinais (Psicologia) , Tremor Essencial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Sensors (Basel) ; 19(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590227

RESUMO

There is no objective gold standard to detect tremors. This concerns not only the choice of the algorithm and sensors, but methods are often designed to detect tremors in one specific group of patients during the performance of a specific task. Therefore, the aim of this study is twofold. First, an objective quantitative method to detect tremor windows (TWs) in accelerometer and electromyography recordings is introduced. Second, the tremor stability index (TSI) is determined to indicate the advantage of detecting TWs prior to analysis. Ten Parkinson's disease (PD) patients, ten essential tremor (ET) patients, and ten healthy controls (HC) performed a resting, postural and movement task. Data was split into 3-s windows, and the power spectral density was calculated for each window. The relative power around the peak frequency with respect to the power in the tremor band was used to classify the windows as either tremor or non-tremor. The method yielded a specificity of 96.45%, sensitivity of 84.84%, and accuracy of 90.80% of tremor detection. During tremors, significant differences were found between groups in all three parameters. The results suggest that the introduced method could be used to determine under which conditions and to which extent undiagnosed patients exhibit tremors.


Assuntos
Eletromiografia , Tremor Essencial/diagnóstico , Doença de Parkinson/diagnóstico , Idoso , Tremor Essencial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Doença de Parkinson/fisiopatologia
18.
Sensors (Basel) ; 19(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461958

RESUMO

Full-body motion capture typically requires sensors/markers to be placed on each rigid body segment, which results in long setup times and is obtrusive. The number of sensors/markers can be reduced using deep learning or offline methods. However, this requires large training datasets and/or sufficient computational resources. Therefore, we investigate the following research question: "What is the performance of a shallow approach, compared to a deep learning one, for estimating time coherent full-body poses using only five inertial sensors?". We propose to incorporate past/future inertial sensor information into a stacked input vector, which is fed to a shallow neural network for estimating full-body poses. Shallow and deep learning approaches are compared using the same input vector configurations. Additionally, the inclusion of acceleration input is evaluated. The results show that a shallow learning approach can estimate full-body poses with a similar accuracy (~6 cm) to that of a deep learning approach (~7 cm). However, the jerk errors are smaller using the deep learning approach, which can be the effect of explicit recurrent modelling. Furthermore, it is shown that the delay using a shallow learning approach (72 ms) is smaller than that of a deep learning approach (117 ms).


Assuntos
Técnicas Biossensoriais , Marcha/fisiologia , Monitorização Fisiológica/métodos , Movimento/fisiologia , Aceleração , Algoritmos , Corpo Humano , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Postura/fisiologia
19.
J Neuroeng Rehabil ; 15(1): 78, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111337

RESUMO

BACKGROUND: Gait retraining interventions using real-time biofeedback have been proposed to alter the loading across the knee joint in patients with knee osteoarthritis. Despite the demonstrated benefits of these conservative treatments, their clinical adoption is currently obstructed by the high complexity, spatial demands, and cost of optical motion capture systems. In this study we propose and evaluate a wearable visual feedback system for gait retraining of the foot progression angle (FPA). METHODS: The primary components of the system are inertial measurement units, which track the human movement without spatial limitations, and an augmented reality headset used to project the visual feedback in the visual field. The adapted gait protocol contained five different target angles ranging from 15 degrees toe-out to 5 degrees toe-in. Eleven healthy participants walked on an instrumented treadmill, and the protocol was performed using both an established laboratory visual feedback driven by optical motion capture, and the proposed wearable system. RESULTS AND CONCLUSIONS: The wearable system tracked FPA with an accuracy of 2.4 degrees RMS and ICC=0.94 across all target angles and subjects, when compared to an optical motion capture reference. In addition, the effectiveness of the biofeedback, reflected by the number of steps with FPA value ±2 degrees from the target, was found to be around 50% in both wearable and laboratory approaches. These findings demonstrate that retraining of the FPA using wearable inertial sensing and visual feedback is feasible with effectiveness matching closely an established laboratory method. The proposed wearable setup may reduce the complexity of gait retraining applications and facilitate their transfer to routine clinical practice.


Assuntos
Retroalimentação Sensorial , Marcha/fisiologia , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Feminino , , Humanos , Articulação do Joelho/fisiologia , Masculino , Osteoartrite do Joelho/reabilitação , Caminhada/fisiologia
20.
Neuromodulation ; 21(6): 553-561, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29034586

RESUMO

OBJECTIVE: Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of this study is to assess the performances of a new eight channel steering-DBS lead and compare this with a conventional cylindrical contact (CC) lead. APPROACH: The two leads were evaluated in a finite element electric field model combined with multicompartment neuron and axon models, representing the internal capsule (IC) fibers and subthalamic nucleus (STN) cells. We defined the optimal stimulation setting as the configuration that activated the highest percentage of STN cells, without activating any IC fibers. With this criterion, we compared monopolar stimulation using a single contact of the steering-DBS lead and CC lead, on three locations and four orientations of the lead. In addition, we performed a current steering test case by dividing the current over two contacts with the steering-DBS lead in its worst-case orientation. MAIN RESULTS: In most cases, the steering-DBS lead is able to stimulate a significantly higher percentage of STN cells compared to the CC lead using single contact stimulation or using a two contact current steering protocol when there is approximately a 1 mm displacement of the CC lead. The results also show that correct placement and orientation of the lead in the target remains an important aspect in achieving the optimal stimulation outcome. SIGNIFICANCE: Currently, clinical trials are set up in Europe with a similar design as the steering-DBS lead. Our results illustrate the importance of the orientation of the new steering-DBS lead in avoiding side effects induced by stimulation of IC fibers. Therefore, in clinical trials sufficient attention should be paid to implanting the steering DBS-lead in the most effective orientation.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Cápsula Interna/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Núcleo Subtalâmico/citologia , Biofísica , Simulação por Computador , Humanos , Núcleo Subtalâmico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA