Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 9(4): e1003474, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637638

RESUMO

The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain.


Assuntos
Precursores de RNA , Splicing de RNA , Processamento Alternativo , Animais , Encéfalo/metabolismo , Éxons , Humanos , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética
2.
Retrovirology ; 12: 30, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25889234

RESUMO

BACKGROUND: Current therapies have succeeded in controlling AIDS pandemic. However, there is a continuing need for new drugs, in particular those acting through new and as yet unexplored mechanisms of action to achieve HIV infection cure. We took advantage of the unique feature of proviral genome to require both activation and inhibition of splicing of viral transcripts to develop molecules capable of achieving long lasting effect on viral replication in humanized mouse models through inhibition of Rev-mediated viral RNA biogenesis. RESULTS: Current HIV therapies reduce viral load during treatment but titers rebound after treatment is discontinued. We devised a new drug that has a long lasting effect after viral load reduction. We demonstrate here that ABX464 compromises HIV replication of clinical isolates of different subtypes without selecting for drug resistance in PBMCs or macrophages. ABX464 alone, also efficiently compromised viral proliferation in two humanized mouse models infected with HIV that require a combination of 3TC, Raltegravir and Tenofovir (HAART) to achieve viral inhibition in current protocols. Crucially, while viral load increased dramatically just one week after stopping HAART treatment, only slight rebound was observed following treatment cessation with ABX464 and the magnitude of the rebound was maintained below to that of HAART for two months after stopping the treatment. Using a system to visualize single HIV RNA molecules in living cells, we show that ABX464 inhibits viral replication by preventing Rev-mediated export of unspliced HIV-1 transcripts to the cytoplasm and by interacting with the Cap Binding Complex (CBC). Deep sequencing of viral RNA from treated cells established that retained viral RNA is massively spliced but importantly, normal cellular splicing is unaffected by the drug. Consistently ABX464 is non-toxic in humans and therefore represents a promising complement to current HIV therapies. CONCLUSIONS: ABX464 represents a novel class of anti-HIV molecules with unique properties. ABX464 has a long lasting effect in humanized mice and neutralizes the expression of HIV-1 proviral genome of infected immune cells including reservoirs and it is therefore a promising drug toward a functional cure of HIV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Carga Viral , Adulto , Animais , Fármacos Anti-HIV/farmacologia , Modelos Animais de Doenças , HIV-1/efeitos dos fármacos , Humanos , Camundongos SCID , Replicação Viral/efeitos dos fármacos
3.
Nucleic Acids Res ; 40(1): 1-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908400

RESUMO

Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing.


Assuntos
Processamento Alternativo , Drosophila/genética , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Músculos/metabolismo , Fatores Sexuais , Fatores de Transcrição/genética
4.
Mol Biol Evol ; 29(1): 261-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21873631

RESUMO

Alternative splicing allows organisms to rapidly modulate protein functions to physiological changes and therefore represents a highly versatile adaptive process. We investigated the conservation of the evolutionary history of the "Fox" family of RNA-binding splicing factors (RBFOX) as well as the conservation of regulated alternative splicing of the genes they control. We found that the RBFOX proteins are conserved in all metazoans examined. In humans, Fox proteins control muscle-specific alternative splicing of many genes but despite the conservation of splicing factors, conservation of regulation of alternative splicing has never been demonstrated between man and nonvertebrate species. Therefore, we studied 40 known Fox-regulated human exons and found that 22 had a tissue-specific splicing pattern in muscle and heart. Of these, 11 were spliced in the same tissue-specific manner in mouse tissues and 4 were tissue-specifically spliced in muscle and heart of the frog Xenopus laevis. The inclusion of two of these alternative exons was also downregulated during tadpole development. Of the 40 in the starting set, the most conserved alternative splicing event was in the transforming growth factor (TGF) beta-activated kinase Tak1 (MAP3K7) as this was also muscle specific in urochordates and in Ambulacraria, the most ancient deuterostome clade. We found exclusion of the muscle-specific exon of Tak1 was itself under control of TGF beta in cell culture and consistently that TGF beta caused an upregulation of Fox2 (RBFOX2) expression. The alternative exon, which codes for an in-frame 27 amino acids between the kinase and known regulatory domain of TAK1, contains conserved features in all organisms including potential phosphorylation sites and likely has an important conserved function in TGF beta signaling and development. This study establishes that deuterostomes share a remarkable conserved physiological process that involves a splicing factor and expression of tissue-specific isoforms of a target gene that expedites a highly conserved signaling pathway.


Assuntos
Evolução Molecular , MAP Quinase Quinase Quinases/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Éxons , Peixes , Humanos , Isoenzimas , MAP Quinase Quinase Quinases/metabolismo , Mamíferos , Camundongos , Dados de Sequência Molecular , Músculos/enzimologia , Músculos/metabolismo , Miocárdio/enzimologia , Miocárdio/metabolismo , Especificidade de Órgãos , Ouriços-do-Mar , Alinhamento de Sequência , Fator de Crescimento Transformador beta/metabolismo , Xenopus laevis
5.
Cancer Treat Res ; 158: 41-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222354

RESUMO

For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.


Assuntos
Proteômica , Precursores de RNA , Processamento Alternativo , Animais , Humanos , Mutação , Splicing de RNA , RNA Mensageiro
6.
Mol Cell Oncol ; 8(6): 1996318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35419480

RESUMO

The early splicing complex A occupies at least eighty nucleotides of intron, in which U2AF covers the polypyrimidine tract. SPF45 (RBM17) functionally substitutes for U2AF on a subset of short introns. Since SPF45 expression confers resistance to various anticancer drugs, SPF45-dependent splicing may play a critical role in multidrug resistance.

7.
Curr Opin Genet Dev ; 12(5): 615-19, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12240623

RESUMO

Germ-cell differentiation is an ideal process for studying the effects of alternative splicing and there are examples of alternative splicing of genes involved in gene regulation and signal transduction at every stage of the spermatogenic pathway. A network of testes-specific splicing factor interactions has been uncovered and combining our knowledge of these RNAs and proteins should lead to an understanding of the regulation of alternative splicing and male fertility.


Assuntos
Processamento Alternativo , Diferenciação Celular , Diferenciação Sexual , Testículo/fisiologia , Fertilidade/genética , Previsões , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas Nucleares/genética , Precursores de RNA , Espermatogênese , Testículo/citologia , Testículo/embriologia
8.
Methods Mol Biol ; 419: 161-70, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369982

RESUMO

Most metazoan genes are alternatively spliced, and a large number of alternatively spliced isoforms are likely to be functionally significant and expressed at specific stages of pathogenesis or differentiation. Splicing changes usually only affect a small portion of a gene, and these changes may cause significant mRNA degradation. After RT-PCR, minor variants can form heteroduplexes with the major variants. Affinity purification of these heteroduplexes using immobilized Thermus aquaticus single-stranded DNA-binding protein allows purification of alternative splice forms in a 1:1 ratio, which makes it easy to sequence the rare form. This chapter provides a detailed protocol of the technique I have developed to identify spliced isoforms called enrichment of alternatively spliced isoforms or EASI.


Assuntos
Processamento Alternativo , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/isolamento & purificação , Ácidos Nucleicos Heteroduplexes/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Testículo/metabolismo , Thermus/metabolismo
9.
Nucleic Acids Res ; 34(15): e103, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16951290

RESUMO

Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This directly purifies the single-stranded regions of heteroduplexes between alternative splices formed in the PCR, enabling direct sequencing of all the rare alternative splice forms of any gene. As a proof of principle the alternative transcripts of three tumour suppressor genes, TP53, MLH1 and MSH2, were isolated from testis cDNA. These contain missing exons, cryptic splice sites or include completely novel exons. EASI beads are stable for months in the fridge and can be easily combined with standard protocols to speed the cloning of novel transcripts.


Assuntos
Processamento Alternativo , Biotecnologia/métodos , DNA Bacteriano/metabolismo , DNA Bacteriano/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Thermus/genética
10.
FEBS Lett ; 581(22): 4127-31, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17716673

RESUMO

Alternative splicing leads to multiple proteins from individual genes and the most common deviation from the norm is precise exon omission. Mutations that cause this can be found deep in introns, especially downstream of the cassette exon. This review summarises what is known about these intronic splicing enhancers and their RNA-binding proteins that cause spliceosome assembly on the upstream exon.


Assuntos
Processamento Alternativo/genética , Íntrons/genética , Neurônios/metabolismo , Animais , Éxons/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA