RESUMO
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies (NBs). The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing NBs as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fitocromo B/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Arabidopsis/citologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/análise , Núcleo Celular/efeitos da radiação , Simulação por Computador , Luz , Modelos Biológicos , Fitocromo B/análise , Ligação Proteica/efeitos da radiação , Processos EstocásticosRESUMO
Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient's own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds' pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.
Assuntos
Alergia e Imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desenvolvimento de Medicamentos , Inibidores de Checkpoint Imunológico/uso terapêutico , Oncologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Biologia de Sistemas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacocinética , Modelos Imunológicos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente TumoralRESUMO
Phytochromes are red/far-red-light detecting photoreceptors that regulate plant growth and development. They photo-interconvert between an inactive Pr (red-light absorbing) and a physiologically active Pfr (far-red-light absorbing) form, acting as light-controlled molecular switches. Although the two major plant phytochromes A (phyA) and B (phyB) share similar absorption properties, they exhibit dramatic differences in their action spectra. Since both phytochromes antagonistically regulate seedling development under vegetative shade, it is essential for plants to clearly distinguish between phyA and phyB action. This discrimination is not comprehensible solely by the molecular properties of the phytochromes, but is evidently due to the dynamics of the phytochrome system. Using an integrated experimental and mathematical modelling approach we show that phytochrome dimerization is an essential element for phyB function. Our findings reveal that light-independent Pfr to Pr relaxation (dark reversion) and association/dissociation to nuclear bodies (NBs) severely depend on the conformational state of the phyB dimer. We conclude that only Pfr-Pfr homodimers of phyB can be responsible for triggering physiological responses, leading to a suppression of phyB function in the far-red range of the light spectrum.