Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 201(1): 38-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524926

RESUMO

AbstractTemporal autocorrelation in environmental conditions influences population dynamics through its effects on vital rates. However, a comprehensive understanding of how and to what extent temporal autocorrelation shapes population dynamics is still lacking because most empirical studies have unrealistically assumed that environmental conditions are temporally independent. Mast seeding is a biological event characterized by highly fluctuating and synchronized seed production at the tree population scale as well as a marked negative temporal autocorrelation. In the current context of global change, mast seeding events are expected to become more frequent, leading to strengthened negative temporal autocorrelations and thereby amplified cyclicality in mast seeding dynamics. Theory predicts that population growth rates are maximized when the environmental cyclicality of consumer resources and their generation times are closely matched. To test this prediction, we took advantage of the long-term monitoring of a wild boar population, a widespread seed consumer species characterized by a short generation time (∼2 years). As expected, simulations indicated that its stochastic population growth rate increased as mast seeding dynamics became more negatively autocorrelated. Our findings demonstrate that accounting for temporal autocorrelations in environmental conditions relative to the generation time of the focal population is required, especially under conditions of global warming, where the cyclicality in resource dynamics is likely to change.


Assuntos
Sementes , Árvores , Dinâmica Populacional
2.
PLoS Pathog ; 17(6): e1009643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166469

RESUMO

Mycobacterium tuberculosis (Mtb) genetic micro-diversity in clinical isolates may underline mycobacterial adaptation to tuberculosis (TB) infection and provide insights to anti-TB treatment response and emergence of resistance. Herein we followed within-host evolution of Mtb clinical isolates in two cohorts of TB patients, either with delayed Mtb culture conversion (> 2 months), or with fast culture conversion (< 2 months). We captured the genetic diversity of Mtb isolates obtained in each patient, by focusing on minor variants detected as unfixed single nucleotide polymorphisms (SNPs). To unmask antibiotic tolerant sub-populations, we exposed these isolates to rifampicin (RIF) prior to whole genome sequencing (WGS) analysis. Thanks to WGS, we detected at least 1 unfixed SNP within the Mtb isolates for 9/15 patients with delayed culture conversion, and non-synonymous (ns) SNPs for 8/15 patients. Furthermore, RIF exposure revealed 9 additional unfixed nsSNP from 6/15 isolates unlinked to drug resistance. By contrast, in the fast culture conversion cohort, RIF exposure only revealed 2 unfixed nsSNP from 2/20 patients. To better understand the dynamics of Mtb micro-diversity, we investigated the variant composition of a persistent Mtb clinical isolate before and after controlled stress experiments mimicking the course of TB disease. A minor variant, featuring a particular mycocerosates profile, became enriched during both RIF exposure and macrophage infection. The variant was associated with drug tolerance and intracellular persistence, consistent with the pharmacological modeling predicting increased risk of treatment failure. A thorough study of such variants not necessarily linked to canonical drug-resistance, but which are prone to promote anti-TB drug tolerance, may be crucial to prevent the subsequent emergence of resistance. Taken together, the present findings support the further exploration of Mtb micro-diversity as a promising tool to detect patients at risk of poorly responding to anti-TB treatment, ultimately allowing improved and personalized TB management.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Rifampina/uso terapêutico , Tuberculose/microbiologia , Humanos , Polimorfismo de Nucleotídeo Único , Tuberculose/tratamento farmacológico
3.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32778544

RESUMO

With a great diversity in gene composition, including multiple putative antibiotic resistance genes, AbaR islands are potential contributors to multidrug resistance in Acinetobacter baumannii However, the effective contribution of AbaR to antibiotic resistance and bacterial physiology remains elusive. To address this, we sought to accurately remove AbaR islands and restore the integrity of their insertion site. To this end, we devised a versatile scarless genome editing strategy. We performed this genetic modification in two recent A. baumannii clinical strains: the strain AB5075 and the nosocomial strain AYE, which carry AbaR11 and AbaR1 islands of 19.7 kbp and 86.2 kbp, respectively. Antibiotic susceptibilities were then compared between the parental strains and their AbaR-cured derivatives. As anticipated by the predicted function of the open reading frame (ORF) of this island, the antibiotic resistance profiles were identical between the wild type and the AbaR11-cured AB5075 strains. In contrast, AbaR1 carries 25 ORFs, with predicted resistance to several classes of antibiotics, and the AYE AbaR1-cured derivative showed restored susceptibility to multiple classes of antibiotics. Moreover, curing of AbaRs restored high levels of natural transformability. Indeed, most AbaR islands are inserted into the comM gene involved in natural transformation. Our data indicate that AbaR insertion effectively inactivates comM and that the restored comM is functional. Curing of AbaR consistently resulted in highly transformable and therefore easily genetically tractable strains. Emendation of AbaR provides insight into the functional consequences of AbaR acquisition.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Ilhas
4.
New Phytol ; 225(3): 1181-1192, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569273

RESUMO

Many perennial plants display masting, that is, fruiting with strong interannual variations, irregular and synchronized between trees within the population. Here, we tested the hypothesis that the early flower phenology in temperate oak species promotes stochasticity into their fruiting dynamics, which could play a major role in tree reproductive success. From a large field monitoring network, we compared the pollen phenology between temperate and Mediterranean oak species. Then, focusing on temperate oak species, we explored the influence of the weather around the time of budburst and flowering on seed production, and simulated with a mechanistic model the consequences that an evolutionary shifting of flower phenology would have on fruiting dynamics. Temperate oak species release pollen earlier in the season than do Mediterranean oak species. Such early flowering in temperate oak species results in pollen often being released during unfavorable weather conditions and frequently results in reproductive failure. If pollen release were delayed as a result of natural selection, fruiting dynamics would exhibit much reduced stochastic variation. We propose that early flower phenology might be adaptive by making mast-seeding years rare and unpredictable, which would greatly help in controlling the dynamics of seed consumers.


Assuntos
Flores/fisiologia , Frutas/fisiologia , Quercus/fisiologia , Evolução Biológica , Florestas , Região do Mediterrâneo , Pólen/fisiologia , Temperatura
5.
PLoS Biol ; 15(2): e2001536, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28199335

RESUMO

Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.


Assuntos
Elementos de DNA Transponíveis/genética , Ecossistema , Transferência Genética Horizontal/genética , Simulação por Computador , Genoma
6.
Ann Bot ; 126(7): 1165-1179, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32686832

RESUMO

BACKGROUND AND AIMS: In plants, high costs of reproduction during some years can induce trade-offs in resource allocation with other functions such as growth, survival and resistance against herbivores or extreme abiotic conditions, but also with subsequent reproduction. Such trade-offs might also occur following resource shortage at particular moments of the reproductive cycle. Because plants are modular organisms, strategies for resource allocation to reproduction can also vary among hierarchical levels. Using a defoliation experiment, our aim was to test how allocation to reproduction was impacted by resource limitation. METHODS: We applied three levels of defoliation (control, moderate and intense) to branches of eight Quercus ilex trees shortly after fruit initiation and measured the effects of resource limitation induced by leaf removal on fruit development (survival, growth and germination potential) and on the production of vegetative and reproductive organs the year following defoliation. KEY RESULTS: We found that defoliation had little impact on fruit development. Fruit survival was not affected by the intense defoliation treatment, but was reduced by moderate defoliation, and this result could not be explained by an upregulation of photosynthesis. Mature fruit mass was not affected by defoliation, nor was seed germination success. However, in the following spring defoliated branches produced fewer shoots and compensated for leaf loss by overproducing leaves at the expense of flowers. Therefore, resource shortage decreased resource allocation to reproduction the following season but did not affect sex ratio. CONCLUSIONS: Our results support the idea of a regulation of resource allocation to reproduction beyond the shoot scale. Defoliation had larger legacy effects than immediate effects.


Assuntos
Quercus , Flores , Frutas , Folhas de Planta , Sementes
7.
Ecol Appl ; 30(6): e02134, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32299142

RESUMO

Mast seeding in temperate oak populations shapes the dynamics of seed consumers and numerous communities. Mast seeding responds positively to warm spring temperatures and is therefore expected to increase under global warming. We investigated the potential effects of changes in oak mast seeding on wild boar population dynamics, a widespread and abundant consumer species. Using long-term monitoring data, we showed that abundant acorn production enhances the proportion of breeding females. With a body-mass-structured population model and a fixed hunting rate of 0.424, we showed that high acorn production over time would lead to an average wild boar population growth rate of 1.197 whereas non-acorn production would lead to a stable population. Finally, using climate projections and a mechanistic model linking weather data to oak reproduction, we predicted that mast seeding frequency might increase over the next century, which would lead to increase in both wild boar population size and the magnitude of its temporal variation. Our study provides rare evidence that some species could greatly benefit from global warming thanks to higher food availability and therefore highlights the importance of investigating the cascading effects of changing weather conditions on the dynamics of wild animal populations to reliably assess the effects of climate change.


Assuntos
Quercus , Sus scrofa , Animais , Mudança Climática , Feminino , Dinâmica Populacional , Sementes , Suínos
8.
Ecol Lett ; 22(1): 98-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30324722

RESUMO

In many perennial wind-pollinated plants, the dynamics of seed production is commonly known to be highly fluctuating from year to year and synchronised among individuals within populations. The proximate causes of such seeding dynamics, called masting, are still poorly understood in oak species that are widespread in the northern hemisphere, and whose fruiting dynamics dramatically impacts forest regeneration and biodiversity. Combining long-term surveys of oak airborne pollen amount and acorn production over large-scale field networks in temperate areas, and a mechanistic modelling approach, we found that the pollen dynamics is the key driver of oak masting. Mechanisms at play involved both internal resource allocation to pollen production synchronised among trees and spring weather conditions affecting the amount of airborne pollen available for reproduction. The sensitivity of airborne pollen to weather conditions might make oak masting and its ecological consequences highly sensitive to climate change.


Assuntos
Pólen , Quercus , Tempo (Meteorologia) , Frutas , Sementes
9.
Oecologia ; 183(4): 1065-1076, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28154966

RESUMO

Pulsed resources influence the demography and evolution of consumer populations and, by cascading effect, the dynamics of the entire community. Mast seeding provides a case study for exploring the evolution of life history traits of consumers in fluctuating environments. Wild boar (Sus scrofa) population dynamics is related to seed availability (acorns/beechnuts). From a long-term monitoring of two populations subjected to markedly different environmental contexts (i.e., both low vs. high frequency of pulsed resources and low vs. high hunting pressure in Italy and in France, respectively), we assessed how pulsed resources shape the reproductive output of females. Using path analyses, we showed that in both populations, abundant seed availability increases body mass and both the absolute and the relative (to body mass) allocation to reproduction through higher fertility. In the Italian population, females equally relied on past and current resources for reproduction and ranked at an intermediate position along the capital-income continuum of breeding tactics. In contrast, in the French population, females relied on current more than past resources and ranked closer to the income end of the continuum. In the French population, one-year old females born in acorn-mast years were heavier and had larger litter size than females born in beechnut-mast years. In addition to the quantity, the type of resources (acorns/beechnuts) has to be accounted for to assess reliably how females allocate resources to reproduction. Our findings highlight a high plasticity in breeding tactics in wild boar females and provide new insight on allocation strategies in fluctuating environments.


Assuntos
Reprodução , Sus scrofa , Animais , Ecossistema , Meio Ambiente , Tamanho da Ninhada de Vivíparos
10.
Am Nat ; 188(1): 66-75, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27322122

RESUMO

Masting, a breeding strategy common in perennial plants, is defined by seed production that is highly variable over years and synchronized at the population level. Resource budget models (RBMs) proposed that masting relies on two processes: (i) the depletion of plant reserves following high fruiting levels, which leads to marked temporal fluctuations in fruiting; and (ii) outcross pollination that synchronizes seed crops among neighboring trees. We revisited the RBM approach to examine the extent to which masting could be impacted by the degree of pollination efficiency, by taking into account various logistic relationships between pollination success and pollen availability. To link masting to other reproductive traits, we split the reserve depletion coefficient into three biological parameters related to resource allocation strategies for flowering and fruiting. While outcross pollination is considered to be the key mechanism that synchronizes fruiting in RBMs, our model counterintuitively showed that intense masting should arise under low-efficiency pollination. When pollination is very efficient, medium-level masting may occur, provided that the costs of female flowering (relative to pollen production) and of fruiting (maximum fruit set and fruit size) are both very high. Our work highlights the powerful framework of RBMs, which include explicit biological parameters, to link fruiting dynamics to various reproductive traits and to provide new insights into the reproductive strategies of perennial plants.


Assuntos
Frutas , Polinização , Sementes , Reprodução , Árvores
11.
BMC Evol Biol ; 13: 28, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379718

RESUMO

BACKGROUND: Whereas the impact of endosymbionts on the ecology of their hosts is well known in some insect species, the question of whether host communities are influenced by endosymbionts remains largely unanswered. Notably, the coexistence of host species competing with each other, which is expected to be stabilized by their ecological differences, could be facilitated by differences in their endosymbionts. Yet, the composition of endosymbiotic communities housed by natural communities of competing host species is still almost unknown. In this study, we started filling this gap by describing and comparing the bacterial endosymbiotic communities of four sibling weevil species (Curculio spp.) that compete with each other to lay eggs into oak acorns (Quercus spp.) and exhibit marked ecological differences. RESULTS: All four species housed the primary endosymbiont Candidatus Curculioniphilus buchneri, yet each of these had a clearly distinct community of secondary endosymbionts, including Rickettsia, Spiroplasma, and two Wolbachia strains. Notably, three weevil species harbored their own predominant facultative endosymbiont and possessed the remaining symbionts at a residual infection level. CONCLUSIONS: The four competing species clearly harbor distinct endosymbiotic communities. We discuss how such endosymbiotic communities could spread and keep distinct in the four insect species, and how these symbionts might affect the organization and species richness of host communities.


Assuntos
Quercus , Rickettsiaceae/fisiologia , Spiroplasma/fisiologia , Simbiose , Gorgulhos/microbiologia , Gorgulhos/fisiologia , Animais , Ecossistema , Feminino , França , Masculino , Dados de Sequência Molecular , Filogenia , Rickettsia/classificação , Rickettsia/fisiologia , Rickettsiaceae/classificação , Spiroplasma/classificação , Gorgulhos/classificação , Wolbachia/classificação , Wolbachia/fisiologia
12.
Tree Physiol ; 43(6): 952-964, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36892403

RESUMO

The keystones of resource budget models to explain mast seeding are that fruit production depletes tree stored resources, which become subsequently limiting to flower production the following year. These two hypotheses have, however, rarely been tested in forest trees. Using a fruit removal experiment, we tested whether preventing fruit development would increase nutrient and carbohydrates storage and modify allocation to reproduction and vegetative growth the following year. We removed all the fruits from nine adult Quercus ilex L. trees shortly after fruit set and compared, with nine control trees, the concentrations of nitrogen (N), phosphorus (P), zinc (Zn), potassium (K) and starch in leaves, twigs and trunk before, during and after the development of female flowers and fruits. The following year, we measured the production of vegetative and reproductive organs as well as their location on the new spring shoots. Fruit removal prevented the depletion of N and Zn in leaves during fruit growth. It also modified the seasonal dynamics in Zn, K and starch in twigs, but had no effect on reserves stored in the trunk. Fruit removal increased the production of female flowers and leaves the following year, and decreased the production of male flowers. Our results show that resource depletion operates differently for male and female flowering, because the timing of organ formation and the positioning of flowers in shoot architecture differ between male and female flowers. Our results suggest that N and Zn availability constrain flower production in Q. ilex, but also that other regulatory pathways might be involved. They strongly encourage further experiments manipulating fruit development over multiple years to describe the causal relationships between variations in resource storage and/or uptake, and male and female flower production in masting species.


Assuntos
Frutas , Quercus , Árvores , Reprodução , Flores , Amido/metabolismo
13.
Curr Biol ; 33(6): 1117-1124.e4, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36764300

RESUMO

Large interannual variation in seed production, called masting, is very common in wind-pollinated tree populations and has profound implications for the dynamics of forest ecosystems and the epidemiology of certain human diseases.1,2,3,4,5 Comparing the reproductive characteristics of populations established in climatically contrasting environments would provide powerful insight into masting mechanisms, but the required data are extremely scarce. We built a database from an unprecedented fine-scale 8-year survey of 150 sessile oak trees (Quercus petraea) from 15 populations distributed over a broad climatic gradient, including individual recordings of annual flowering effort, fruiting rate, and fruit production. Although oak masting was previously considered to depend mainly on fruiting rate variations,6,7 we show that the female flowering effort is highly variable from year to year and explains most of the fruiting dynamics in two-thirds of the populations. What drives masting was found to differ among populations living under various climates. In soft-climate populations, the fruiting rate increases initially strongly with the flowering effort, and the intensity of masting results mainly from the flowering synchrony level between individuals. By contrast, the fruiting rate of harsh-climate populations depends mainly on spring weather, which ensures intense masting regardless of the flowering synchronization level. Our work highlights the need for jointly measuring flowering effort and fruit production to decipher the diversity of masting mechanisms among populations. Accounting for such diversity will be decisive in proposing accurate, and possibly contrasted, scenarios about future reproductive patterns of perennial plants with ongoing climate change and their numerous cascading effects.


Assuntos
Ecossistema , Quercus , Humanos , Sementes , Frutas , Reprodução , Árvores
14.
Trends Genet ; 25(7): 317-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19540613

RESUMO

Like ecological communities, which vary in species composition, eukaryote genomes differ in the amount and diversity of transposable elements (TEs) that they harbor. Given that TEs have a considerable impact on the biology of their host species, we need to better understand whether their dynamics reflects some form of organization or is primarily driven by stochastic processes. Here, we borrow ecological concepts on species diversity to explore how interactions between TEs can contribute to structure TE communities within their genomic ecosystem. Whereas the niche theory predicts a stable diversity of TEs because of their divergent characteristics, the neutral theory of biodiversity predicts the assembly of TE communities from stochastic processes acting at the level of the individual TE. Contrary to ecological communities, however, TE communities are shaped by selection at the level of their ecosystem (i.e. the host individual). Developing ecological models specific to the genome will thus be a prerequisite for modeling the dynamics of TEs.


Assuntos
Elementos de DNA Transponíveis , Ecossistema , Epigênese Genética , Genoma/fisiologia , Modelos Genéticos , Animais , Genoma/genética , Humanos , Dinâmica Populacional , Processos Estocásticos
15.
mBio ; 13(1): e0263121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073754

RESUMO

Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii. IMPORTANCE Acinetobacter baumannii is a multidrug-resistant pathogen responsible for difficult-to-treat hospital-acquired infections. Understanding the mechanisms leading to the emergence of the multidrug resistance in this pathogen today is crucial. Horizontal gene transfer is assumed to largely contribute to this multidrug resistance. However, in A. baumannii, the mechanisms leading to genome recombination and the horizontal transfer of resistance genes are poorly understood. We describe experimental evidence that natural transformation, a horizontal gene transfer mechanism recently highlighted in A. baumannii, allows the highly efficient interbacterial transfer of genetic elements carrying resistance to last-line antibiotic carbapenems. Importantly, we demonstrated that natural transformation, occurring in mixed populations of Acinetobacter, enables the transfer of large resistance island-mobilizing multiple-resistance genes.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
16.
Int J Infect Dis ; 125: 74-83, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36273524

RESUMO

OBJECTIVES: Mycobacterium tuberculosis (Mtb) infections result in a wide spectrum of clinical presentations but without proven Mtb genetic determinants. Herein, we hypothesized that the genetic features of Mtb clinical isolates, such as specific polymorphisms or microdiversity, may be linked to tuberculosis (TB) severity. METHODS: A total of 234 patients with pulmonary TB (including 193 drug-susceptible and 14 monoresistant cases diagnosed between 2017 and 2020 and 27 multidrug-resistant cases diagnosed between 2010 and 2020) were stratified according to TB disease severity, and Mtb genetic features were explored using whole genome sequencing, including heterologous single-nucleotide polymorphism (SNP), calling to explore microdiversity. Finally, we performed a structural equation modeling analysis to relate TB severity to Mtb genetic features. RESULTS: The clinical isolates from patients with mild TB carried mutations in genes associated with host-pathogen interaction, whereas those from patients with moderate/severe TB carried mutations associated with regulatory mechanisms. Genome-wide association study identified an SNP in the promoter of the gene coding for the virulence regulator espR, statistically associated with moderate/severe disease. Structural equation modeling and model comparisons indicated that TB severity was associated with the detection of Mtb microdiversity within clinical isolates and to the espR SNP. CONCLUSION: Taken together, these results provide a new insight to better understand TB pathophysiology and could provide a new prognosis tool for pulmonary TB severity.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Estudo de Associação Genômica Ampla , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose/tratamento farmacológico , Sequenciamento Completo do Genoma , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/uso terapêutico
17.
Funct Ecol ; 35(8): 1745-1755, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36825207

RESUMO

The genetic and phenotypic variability of life history traits determines the demographic attributes of tree populations and, thus, their responses to anthropogenic climate change. Growth- and survival-related traits have been widely studied in forest ecology, but little is known about the determinism of reproductive traits.Using an elevation gradient experiment in the Pyrenees we assessed the degree to which variations in reproductive effort along climatic gradients are environmentally or genetically driven, by comparing oak populations (Quercus petraea) growing under field and common garden conditions.In situ monitoring revealed a decline in reproductive effort with increasing elevation and decreasing temperature. In common garden conditions, significant genetic differentiation was observed between provenances for reproduction and growth: trees from cold environments (high elevations) grew more slowly, and produced larger acorns in larger numbers. Our observations show that genetic and phenotypic clines for reproductive traits have opposite signs (counter-gradient) along the environmental gradient as opposed to growth, for which genetic variation parallels phenotypic variation (co-gradient).The counter-gradient found here for reproductive effort reveals that genetic variation partly counteracts the phenotypic effect of temperature, moderating the change in reproductive effort according to temperature. We consider the possible contribution to this counter-gradient in reproductive effort as an evolutionary trade-off between reproduction and growth.

18.
Am Nat ; 175(6): 650-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20415532

RESUMO

Male choosiness for mates is an underexplored mechanism of sexual selection. A few theoretical studies suggest that males may exhibit--but only under rare circumstances--a reversed male mate choice (RMMC; i.e., highly competitive males focus on the most fecund females, while the low-quality males exclusively pair with less fecund mates to avoid being outcompeted by stronger rivals). Here we propose a new model to explore RMMC by relaxing some of the restrictive assumptions of the previous models and by considering an extended range of factors known to alter the strength of sexual selection (males' investment in reproduction, difference of quality between females, operational sex ratio). Unexpectedly, we found that males exhibited a reversed mate choice under a wide range of circumstances. RMMC mostly occurs when the female encounter rate is high and males devote much of their time to breeding. This condition-dependent strategy occurs even if there is no risk of injury during the male-male contest or when the difference in quality between females is small. RMMC should thus be a widespread yet underestimated component of sexual selection and should largely contribute to the assortative pairing patterns observed in numerous taxa.


Assuntos
Comportamento Competitivo , Preferência de Acasalamento Animal , Modelos Biológicos , Animais , Feminino , Fertilidade , Teoria dos Jogos , Masculino , Razão de Masculinidade
19.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127449

RESUMO

Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.


Assuntos
Bactérias/genética , Simulação por Computador , Genoma Bacteriano , Sequências Repetitivas Dispersas , Transformação Bacteriana , Microbiologia Ambiental , Transferência Genética Horizontal
20.
Tuberculosis (Edinb) ; 116: 61-66, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31153520

RESUMO

Mycobacterium tuberculosis (Mtb) whole genome sequencing (WGS) plays an increasingly important role in tuberculosis diagnosis and research. WGS is typically performed on biobanked isolates obtained by subculture during diagnosis. Genetic variation upon culturing is known to occur in other bacterial species. However, little is understood regarding the impact of different subculture media on genome-wide diversity and variant selection in Mtb. Here we compared WGS derived from direct sequencing of sputa samples to WGS sequences from isolates subcultured on 3 different media. Based on analysis of single nucleotide polymorphisms (SNPs), there was no evidence of variant selection caused by the different culture media used, indicating that subcultured clinical strains can be reliably used to explore genetic determinants of Mtb pathogenesis and epidemiological features.


Assuntos
Técnicas Bacteriológicas , DNA Bacteriano/genética , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar/diagnóstico , Sequenciamento Completo do Genoma , DNA Bacteriano/isolamento & purificação , Humanos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA