Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 521(7551): 208-12, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25739499

RESUMO

Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.


Assuntos
Genoma Bacteriano/genética , Metagenoma/genética , Microbiota/fisiologia , Pergelissolo/microbiologia , Microbiologia do Solo , Áreas Alagadas , Alaska , Atmosfera/química , Ciclo do Carbono , Clima , Desnitrificação , Congelamento , Ferro/metabolismo , Metano/metabolismo , Microbiota/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Filogenia , Estações do Ano , Enxofre/metabolismo , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 113(9): 2436-41, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884177

RESUMO

Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.


Assuntos
Proteômica , Proteínas Estruturais Virais/química , Biologia Marinha , Vírus/química
3.
Mol Cell Proteomics ; 13(10): 2673-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038065

RESUMO

The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri alters the hemocyte proteome and reveals proteins that may be important for maintaining host-symbiont specificity.


Assuntos
Decapodiformes/microbiologia , Decapodiformes/fisiologia , Hemócitos/metabolismo , Proteoma/análise , Proteômica/métodos , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/fisiologia , Animais , Antibacterianos/farmacologia , Regulação da Expressão Gênica , Simbiose
4.
Proc Natl Acad Sci U S A ; 110(31): 12798-803, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858439

RESUMO

Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/fisiologia , Metagenoma , Proteômica , Sequência de Aminoácidos , Bacteroidetes/virologia , Dados de Sequência Molecular , Oceanos e Mares , Proteoma/metabolismo , Proteínas Virais/metabolismo
5.
BMC Genomics ; 16: 920, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26559510

RESUMO

BACKGROUND: Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. METHODS: Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. RESULTS: Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. CONCLUSIONS: The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts.


Assuntos
Dirofilaria immitis/genética , Dirofilaria immitis/metabolismo , Proteoma , Simbiose , Transcriptoma , Wolbachia/genética , Wolbachia/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Masculino , Especificidade de Órgãos/genética , Proteômica
6.
Environ Sci Technol ; 49(22): 13283-93, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26488752

RESUMO

The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.


Assuntos
Cério/farmacologia , Phaseolus/efeitos dos fármacos , Sementes/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Cério/administração & dosagem , Cério/farmacocinética , Cério/toxicidade , Relação Dose-Resposta a Droga , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Valor Nutritivo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Sementes/metabolismo , Poluentes do Solo/administração & dosagem , Poluentes do Solo/farmacocinética , Poluentes do Solo/farmacologia , Distribuição Tecidual
7.
Proc Natl Acad Sci U S A ; 109(19): E1173-82, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22517752

RESUMO

Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Oligoquetos/metabolismo , Proteômica/métodos , Simbiose , Animais , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Cromatografia Líquida de Alta Pressão , Ecossistema , Eletroforese em Gel de Poliacrilamida , Metabolismo Energético , Interações Hospedeiro-Patógeno , Hidrogênio/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Oligoquetos/microbiologia , Água do Mar
8.
Proteomics ; 14(21-22): 2471-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25262930

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are an important class of glycoproteins that are tethered to the surface of mammalian cells via the lipid GPI. GPI-APs have been implicated in many important cellular functions including cell adhesion, cell signaling, and immune regulation. Proteomic identification of mammalian GPI-APs en masse has been limited technically by poor sensitivity for these low abundance proteins and the use of methods that destroy cell integrity. Here, we present methodology that permits identification of GPI-APs liberated directly from the surface of intact mammalian cells through exploitation of their appended glycans to enrich for these proteins ahead of LC-MS/MS analyses. We validate our approach in HeLa cells, identifying a greater number of GPI-APs from intact cells than has been previously identified from isolated HeLa membranes and a lipid raft preparation. We further apply our approach to define the cohort of endogenous GPI-APs that populate the distinct apical and basolateral membrane surfaces of polarized epithelial cell monolayers. Our approach provides a new method to achieve greater sensitivity in the identification of low abundance GPI-APs from the surface of live cells and the nondestructive nature of the method provides new opportunities for the temporal or spatial analysis of cellular GPI-AP expression and dynamics.


Assuntos
Membrana Celular/química , Proteínas Ligadas por GPI/análise , Polissacarídeos/análise , Proteômica , Alcinos/química , Animais , Linhagem Celular , Cromatografia Líquida , Proteínas Ligadas por GPI/isolamento & purificação , Células HeLa , Humanos , Polissacarídeos/isolamento & purificação , Proteômica/métodos , Espectrometria de Massas em Tandem
9.
Proc Natl Acad Sci U S A ; 108(11): 4352-7, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368207

RESUMO

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.


Assuntos
Ecossistema , Eucariotos/genética , Genômica/métodos , Sequência de Aminoácidos , Bactérias/metabolismo , Bactérias/efeitos da radiação , Biodegradação Ambiental/efeitos da radiação , Enzimas/metabolismo , Eucariotos/enzimologia , Genoma/genética , Luz , Filogenia , Fitoplâncton/genética , Fitoplâncton/efeitos da radiação , Proteínas/química , Especificidade da Espécie
10.
Appl Environ Microbiol ; 79(17): 5384-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23645189

RESUMO

Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and "Leptospirillum rubarum" (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species "Leptospirillum group IV UBA BS." These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Resíduos Industriais , Anaerobiose , Proteínas de Bactérias/genética , Ciclo do Carbono , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Metagenômica , Fixação de Nitrogênio , Proteômica , RNA Ribossômico 16S/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
11.
Nature ; 446(7135): 537-41, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17344860

RESUMO

Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metal-rich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strain-resolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis of microorganisms in the natural environment.


Assuntos
Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Proteômica , Recombinação Genética/genética , Sequência de Aminoácidos , Bactérias/química , Bactérias/enzimologia , Biofilmes/classificação , Genômica , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Proteoma/química , Proteoma/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética
12.
Proc Natl Acad Sci U S A ; 107(19): 8806-11, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421484

RESUMO

Metagenomics has provided access to genomes of as yet uncultivated microorganisms in natural environments, yet there are gaps in our knowledge-particularly for Archaea-that occur at relatively low abundance and in extreme environments. Ultrasmall cells (<500 nm in diameter) from lineages without cultivated representatives that branch near the crenarchaeal/euryarchaeal divide have been detected in a variety of acidic ecosystems. We reconstructed composite, near-complete approximately 1-Mb genomes for three lineages, referred to as ARMAN (archaeal Richmond Mine acidophilic nanoorganisms), from environmental samples and a biofilm filtrate. Genes of two lineages are among the smallest yet described, enabling a 10% higher coding density than found genomes of the same size, and there are noncontiguous genes. No biological function could be inferred for up to 45% of genes and no more than 63% of the predicted proteins could be assigned to a revised set of archaeal clusters of orthologous groups. Some core metabolic genes are more common in Crenarchaeota than Euryarchaeota, up to 21% of genes have the highest sequence identity to bacterial genes, and 12 belong to clusters of orthologous groups that were previously exclusive to bacteria. A small subset of 3D cryo-electron tomographic reconstructions clearly show penetration of the ARMAN cell wall and cytoplasmic membranes by protuberances extended from cells of the archaeal order Thermoplasmatales. Interspecies interactions, the presence of a unique internal tubular organelle [Comolli, et al. (2009) ISME J 3:159-167], and many genes previously only affiliated with Crenarchaea or Bacteria indicate extensive unique physiology in organisms that branched close to the time that Cren- and Euryarchaeotal lineages diverged.


Assuntos
Archaea/citologia , Archaea/genética , Archaea/metabolismo , Archaea/ultraestrutura , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Biofilmes , Ciclo Celular , Replicação do DNA , Genoma Arqueal/genética , Genoma Bacteriano/genética , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteômica , Especificidade da Espécie , Transcrição Gênica
13.
Proc Natl Acad Sci U S A ; 107(6): 2383-90, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133593

RESUMO

Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillum group II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry-based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the approximately 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.


Assuntos
Bactérias/genética , Ecossistema , Genoma Bacteriano/genética , Genômica/métodos , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Biodiversidade , Biofilmes , California , Análise por Conglomerados , Evolução Molecular , Variação Genética , Genótipo , Geografia , Hibridização in Situ Fluorescente , RNA Ribossômico 23S/genética
14.
J Proteome Res ; 11(12): 6008-18, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23126408

RESUMO

The expanding use of surfactants for proteome sample preparations has prompted the need to systematically optimize the application and removal of these MS-deleterious agents prior to proteome measurements. Here we compare four detergent cleanup methods (trichloroacetic acid (TCA) precipitation, chloroform/methanol/water (CMW) extraction, a commercial detergent removal spin column method (DRS) and filter-aided sample preparation (FASP)) to provide efficiency benchmarks with respect to protein, peptide, and spectral identifications in each case. Our results show that for protein-limited samples, FASP outperforms the other three cleanup methods, while at high protein amounts, all the methods are comparable. This information was used to investigate and contrast molecular weight-based fractionated with unfractionated lysates from three increasingly complex samples ( Escherichia coli K-12, a five microbial isolate mixture, and a natural microbial community groundwater sample), all of which were prepared with an SDS-FASP approach. The additional fractionation step enhanced the number of protein identifications by 8% to 25% over the unfractionated approach across the three samples.


Assuntos
Fracionamento Químico/métodos , Detergentes/química , Proteoma/análise , Proteômica/métodos , Microbiologia da Água , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Clorofórmio/química , Cromatografia Líquida/métodos , Escherichia coli K12/química , Água Subterrânea/microbiologia , Metanol/química , Proteólise , Pseudomonas putida/química , Sensibilidade e Especificidade , Shewanella putrefaciens/química , Dodecilsulfato de Sódio/química , Soluções/química , Espectrometria de Massas em Tandem/métodos , Ácido Tricloroacético/química
15.
J Proteome Res ; 11(2): 861-70, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22191549

RESUMO

Many key proteins, such as those involved in cellular signaling or transcription, are difficult to measure in microbial proteomic experiments due to the interfering presence of more abundant, dominant proteins. In an effort to enhance the identification of previously undetected proteins, as well as provide a methodology for selective enrichment, we evaluated and optimized immobilized metal affinity chromatography (IMAC) coupled with mass spectrometric characterization of extracellular proteins from an extremophilic microbial community. Seven different metals were tested for IMAC enrichment. The combined results added ∼20% greater proteomic depth to the extracellular proteome. Although this IMAC enrichment could not be conducted at the physiological pH of the environmental system, this approach did yield a reproducible and specific enrichment of groups of proteins with functions potentially vital to the community, thereby providing a more extensive biochemical characterization. Notably, 40 unknown proteins previously annotated as "hypothetical" were enriched and identified for the first time. Examples of identified proteins includes a predicted TonB signal sensing protein homologous to other known TonB proteins and a protein with a COXG domain previously identified in many chemolithoautotrophic microbes as having a function in the oxidation of CO.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Cromatografia de Afinidade/métodos , Espaço Extracelular/química , Metais Pesados/metabolismo , Proteômica/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Biofilmes , Análise por Conglomerados , Espaço Extracelular/metabolismo , Magnésio/química , Magnésio/metabolismo , Espectrometria de Massas , Metais Pesados/química , Ligação Proteica
16.
Appl Environ Microbiol ; 78(5): 1424-36, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22179257

RESUMO

Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems-level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing cells of Dehalococcoides ethenogenes strain 195 to fixed nitrogen limitation (FNL), as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially upregulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and is implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly upregulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally downregulated in response to FNL, and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition, while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and posttranslational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number of genes coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status.


Assuntos
Chloroflexi/genética , Chloroflexi/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Proteoma/análise , Estresse Fisiológico , Transcriptoma , Enzimas/biossíntese , Enzimas/genética , Redes e Vias Metabólicas/genética
17.
J Ind Microbiol Biotechnol ; 39(6): 949-55, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22395897

RESUMO

Economically viable production of solvents through acetone-butanol-ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of five proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.


Assuntos
Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Fermentação , Perfilação da Expressão Gênica , Microbiologia Industrial , Proteômica/métodos , Butanóis/metabolismo , Clostridium acetobutylicum/genética , Xilose/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(14): 5859-64, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19321416

RESUMO

The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial-microbial and microbial-host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.


Assuntos
Bacteroidetes/metabolismo , Ecossistema , Eubacterium/metabolismo , Intestinos/microbiologia , Animais , Bacteroidetes/citologia , Eubacterium/citologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Redes e Vias Metabólicas/genética , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Simbiose
19.
Environ Microbiol ; 13(8): 2279-92, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21518216

RESUMO

Proteomes of acid mine drainage biofilms at different stages of ecological succession were examined to understand microbial responses to changing community membership. We evaluated the degree of reproducibility of the community proteomes between samples of the same growth stage and found stable and predictable protein abundance patterns across time and sampling space, allowing for a set of 50 classifier proteins to be identified for use in predicting growth stages of undefined communities. Additionally, physiological changes in the dominant species, Leptospirillum Group II, were analysed as biofilms mature. During early growth stages, this population responds to abiotic stresses related to growth on the acid mine drainage solution. Enzymes involved in protein synthesis, cell division and utilization of 1- and 2-carbon compounds were more abundant in early growth stages, suggesting rapid growth and a reorganization of metabolism during biofilm initiation. As biofilms thicken and diversify, external stresses arise from competition for dwindling resources, which may inhibit cell division of Leptospirillum Group II through the SOS response. This population also represses translation and synthesizes more complex carbohydrates and amino acids in mature biofilms. These findings provide unprecedented insight into the physiological changes that may result from competitive interactions within communities in natural environments.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Proteoma , Ácidos/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes
20.
Appl Environ Microbiol ; 77(15): 5230-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685158

RESUMO

In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80% of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by ∼2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as ß-N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.


Assuntos
Biofilmes , Proteínas da Matriz Extracelular/análise , Consórcios Microbianos/fisiologia , Proteômica , Membrana Celular , Celulase/análise , Celulase/metabolismo , Proteínas e Peptídeos de Choque Frio/análise , Concentração de Íons de Hidrogênio , Proteínas de Membrana/análise , Chaperonas Moleculares/análise , Peptídeo Hidrolases/análise , Periplasma , Isomerases de Dissulfetos de Proteínas/análise , Microbiologia do Solo , beta-N-Acetil-Hexosaminidases/análise , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA