Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638792

RESUMO

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
3.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
4.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38758089

RESUMO

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Assuntos
Cromatina , Diploide , Evolução Molecular , Gossypium , Poliploidia , Gossypium/genética , Cromatina/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Nucleossomos/genética , Genes Duplicados , Regiões Promotoras Genéticas
5.
J Transl Med ; 22(1): 732, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103816

RESUMO

BACKGROUND: Inspiratory muscle fatigue has been shown to have effects on limbs blood flow and physical performance. This study aimed to evaluate the influence of an inspiratory muscle fatigue protocol on respiratory muscle strength, vertical jump performance and muscle oxygen saturation in healthy youths. METHODS: A randomized and double-blinded controlled clinical trial, was conducted. Twenty-four participants aged 18-45 years, non-smokers and engaged in sports activity at least three times a week for a minimum of one year were enrolled in this investigation. Participants were randomly assigned to three groups: Inspiratory Muscle Fatigue (IMFG), Activation, and Control. Measurements of vertical jump, diaphragmatic ultrasound, muscle oxygen saturation, and maximum inspiratory pressure were taken at two stages: before the intervention (T1) and immediately after treatment (T2). RESULTS: The IMFG showed lower scores in muscle oxygen saturation and cardiorespiratory variables after undergoing the diaphragmatic fatigue intervention compared to the activation and control groups (p < 0.05). For the vertical jump variables, intragroup differences were found (p < 0.01), but no differences were shown between the three groups (p > 0.05). CONCLUSIONS: Inspiratory muscle fatigue appears to negatively impact vertical jump performance, muscle oxygen saturation and inspiratory muscle strength in healthy youths. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT06271876. Date of registration 02/21/2024. https://clinicaltrials.gov/study/NCT06271876 .


Assuntos
Inalação , Fadiga Muscular , Força Muscular , Músculos Respiratórios , Humanos , Músculos Respiratórios/fisiologia , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Masculino , Adolescente , Adulto Jovem , Feminino , Adulto , Inalação/fisiologia , Saturação de Oxigênio/fisiologia , Pessoa de Meia-Idade , Diafragma/fisiologia , Método Duplo-Cego
6.
PLoS Genet ; 17(8): e1009689, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383745

RESUMO

Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.


Assuntos
Pegada de DNA/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Zea mays/genética , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Reguladores de Transcrição , Sequenciamento Completo do Genoma
7.
PLoS Comput Biol ; 18(8): e1009938, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984867

RESUMO

Epigenetic clocks allow us to accurately predict the age and future health of individuals based on the methylation status of specific CpG sites in the genome and are a powerful tool to measure the effectiveness of longevity interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most common approach is to create clocks using elastic net regression modelling of all measured CpG sites, without first identifying specific features or CpGs of interest. The addition of feature selection approaches provides the opportunity to optimise the identification of predictive CpG sites. Here, we apply novel feature selection methods and combinatorial approaches including newly adapted neural networks, genetic algorithms, and 'chained' combinations. Human whole blood methylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correlation scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2 correlation score of 0.87. The five most frequent sites across all clocks were modelled to build a clock with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they maintain excellent predictive accuracy. When compared with three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these validation datasets, our clocks outperformed all three models. We identified gene regulatory regions associated with selected CpGs as possible targets for future aging studies. Thus, our feature selection algorithms build accurate, generalizable clocks with a low number of CpG sites, providing important tools for the field.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Humanos , Longevidade/genética
8.
Medicina (Kaunas) ; 58(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35888636

RESUMO

Background and objectives: Chronic tension-type headache (TTH) is the type of headache with the highest prevalence. The involvement of musculoskeletal structures in TTH is supported by evidence in the scientific literature. Among these, deep cervical muscle strength appears to be related to the function of the cervical spine and the clinical characteristics of TTH. This study aimed to correlate anatomical, functional, and psychological variables in patients with TTH. Materials and methods: An observational descriptive study was carried out with 22 participants diagnosed with TTH for at least six months. The characteristics of headaches, including ultrasound-based deep neck flexor and extensor muscle thickness, range of motion (ROM), and pressure pain threshold (PPT), were recorded. We also conducted the Pain Vigilance and Awareness Questionnaire (PVAQ) and the Craniocervical Flexion Test (CCFT). Results: Moderate-large negative correlations were found between the PVAQ and the muscle thickness of right deep flexors contracted (r = -0.52; p = 0.01), left multifidus contracted (r = -0.44; p = 0.04), right multifidus at rest (r = -0.48; p = 0.02), and right multifidus contracted (r = -0.45; p = 0.04). Moderate-large positive correlations were found between the CCFT score and the left cervical rotation ROM (r = 0.53; p = 0.01), right cervical rotation ROM (r = 0.48; p = 0.03), muscle thickness of left multifidus contracted (r = 0.50; p = 0.02), and muscle thickness of right multifidus at rest (r = 0.51; p = 0.02). The muscle thickness of the contracted right deep cervical flexors showed a moderate negative correlation with headache intensity (r = -0.464; p = 0.03). No correlations were found between PPT and the rest of the variables analyzed. Conclusions: In patients with TTH, a higher thickness of deep cervical muscles was associated with higher ROM and higher scores in the CCFT. In turn, the thickness of deep cervical muscles showed negative correlations with pain hypervigilance and headache intensity. These results contribute to a better understanding of the physical and psychosocial factors contributing to the development of TTH, which is useful for implementing appropriate prevention and treatment measures.


Assuntos
Cefaleia do Tipo Tensional , Vértebras Cervicais , Cefaleia , Humanos , Músculos do Pescoço/fisiologia , Amplitude de Movimento Articular/fisiologia
9.
Rural Remote Health ; 22(2): 6936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35469419

RESUMO

INTRODUCTION: Anemia is a global public health issue that affects mainly children aged less than 5 years. In Peru, despite the reduction in the prevalence of anemia between 2010 and 2018, anemia remains a major concern, especially in high-risk zones such as rural areas. Several sociodemographic factors have been associated with anemia in children; however, components contributing to the urban-rural gap have not been previously assessed. The purpose of this study was to evaluate the determinants of the difference in anemia prevalence between urban and rural areas, and its spatial distribution in Peruvian children aged 6-59 months. METHODS: A secondary data analysis was conducted using the 2019 Peruvian Demographic Health Survey. The study population included 18 846 children aged 6-59 months. A multivariate decomposition analysis for non-linear response model was performed to identify the factors contributing to the gap in the prevalence of anemia across urban and rural areas. Global Moran´s I autocorrelation, Ordinary Kriging interpolation and Bernoulli-based purely spatial scan statistics were employed to assess the spatial pattern of anemia. RESULTS: Nationwide, the prevalence of anemia in Peru was 29.47% (95%CI 28.63-30.33). In rural areas, it was 38.25%, and in urban areas 26.39%. The decomposition analysis revealed that 88.61% of the difference in the prevalence of anemia between urban and rural areas was attributed to the difference in the respondents' characteristics. Wealth index, mother´s education, mother´s employment status, number of living children and mother´s age were key determinants contributing to the rural-urban gap. Spatial heterogeneity of anemia prevalence in childhood was observed at both inter- and intradepartmental level. The SaTScan spatial analysis identified six significant cluster areas with high prevalence of anemia in childhood. CONCLUSION: A considerable gap of anemia prevalence between urban and rural areas was found. Targeted interventions are necessary to reduce geographic disparities.


Assuntos
Anemia , População Rural , Anemia/epidemiologia , Criança , Humanos , Peru/epidemiologia , Análise Espacial , População Urbana
10.
Genome Res ; 28(6): 800-811, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735606

RESUMO

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/genética , Genoma/genética , Células-Tronco Neurais/citologia , Alelos , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Regiões Promotoras Genéticas
11.
Plant Physiol ; 183(1): 206-220, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205451

RESUMO

The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems.


Assuntos
Arabidopsis/metabolismo , Cromatina/metabolismo , DNA de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA de Plantas/fisiologia , Origem de Replicação/genética , Origem de Replicação/fisiologia
12.
Philos Trans A Math Phys Eng Sci ; 379(2207): 20200365, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34398654

RESUMO

The transition from traditional to truly smart dynamically adaptable manufacturing demands the adoption of a high degree of autonomy within automation systems, with resultant changes in the role of the human, in both the manufacturing and logistics functions within the factory. In the context of smart manufacturing, this paper describes research towards the realization of adaptable autonomous automation systems from both the control and information perspectives. Key facets of the approach taken at WMG are described in relation to human-machine interaction, autonomous approaches to assembly and intra-logistics, integration and dynamic system-wide optimization. The progression from simple distributed behavioural components towards autonomous functional entities is described. Effective systems integration and the importance of interoperability in the realization of more distributed and autonomous automation systems are discussed, so that operational information can propagate seamlessly, eliminating the traditional boundary between operational technology and information technology systems, and as an enabler for global knowledge collection, analysis and optimization. This article is part of the theme issue 'Towards symbiotic autonomous systems'.

13.
Nature ; 515(7527): 402-5, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409831

RESUMO

Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.


Assuntos
Cromatina/química , Cromatina/genética , Período de Replicação do DNA , DNA/biossíntese , Animais , Compartimento Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , Genoma/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Camundongos , Especificidade de Órgãos , Fatores de Tempo
14.
PLoS Genet ; 12(4): e1005968, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058886

RESUMO

The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species.


Assuntos
Padronização Corporal , Proteínas de Homeodomínio/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Alelos , Animais , Proteínas de Homeodomínio/genética , Proteínas de Peixe-Zebra/genética
15.
Proc Natl Acad Sci U S A ; 113(22): E3177-84, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185945

RESUMO

Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome.


Assuntos
Cromatina/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Nucleossomos/genética , Proteínas de Plantas/genética , Zea mays/genética , Éxons/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nuclease do Micrococo/metabolismo , Zea mays/metabolismo
16.
BMC Bioinformatics ; 19(1): 131, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642840

RESUMO

BACKGROUND: Identification of functional elements of a genome often requires dividing a sequence of measurements along a genome into segments where adjacent segments have different properties, such as different mean values. Despite dozens of algorithms developed to address this problem in genomics research, methods with improved accuracy and speed are still needed to effectively tackle both existing and emerging genomic and epigenomic segmentation problems. RESULTS: We designed an efficient algorithm, called iSeg, for segmentation of genomic and epigenomic profiles. iSeg first utilizes dynamic programming to identify candidate segments and test for significance. It then uses a novel data structure based on two coupled balanced binary trees to detect overlapping significant segments and update them simultaneously during searching and refinement stages. Refinement and merging of significant segments are performed at the end to generate the final set of segments. By using an objective function based on the p-values of the segments, the algorithm can serve as a general computational framework to be combined with different assumptions on the distributions of the data. As a general segmentation method, it can segment different types of genomic and epigenomic data, such as DNA copy number variation, nucleosome occupancy, nuclease sensitivity, and differential nuclease sensitivity data. Using simple t-tests to compute p-values across multiple datasets of different types, we evaluate iSeg using both simulated and experimental datasets and show that it performs satisfactorily when compared with some other popular methods, which often employ more sophisticated statistical models. Implemented in C++, iSeg is also very computationally efficient, well suited for large numbers of input profiles and data with very long sequences. CONCLUSIONS: We have developed an efficient general-purpose segmentation tool and showed that it had comparable or more accurate results than many of the most popular segment-calling algorithms used in contemporary genomic data analysis. iSeg is capable of analyzing datasets that have both positive and negative values. Tunable parameters allow users to readily adjust the statistical stringency to best match the biological nature of individual datasets, including widely or sparsely mapped genomic datasets or those with non-normal distributions.


Assuntos
Algoritmos , Bases de Dados Genéticas , Epigenômica , Simulação por Computador , Variações do Número de Cópias de DNA/genética , Desoxirribonucleases/metabolismo , Genoma , Humanos , Modelos Estatísticos , Neoplasias/genética , Zea mays/genética
17.
Genome Res ; 25(8): 1104-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995270

RESUMO

Mammalian genomes are partitioned into domains that replicate in a defined temporal order. These domains can replicate at similar times in all cell types (constitutive) or at cell type-specific times (developmental). Genome-wide chromatin conformation capture (Hi-C) has revealed sub-megabase topologically associating domains (TADs), which are the structural counterparts of replication domains. Hi-C also segregates inter-TAD contacts into defined 3D spatial compartments that align precisely to genome-wide replication timing profiles. Determinants of the replication-timing program are re-established during early G1 phase of each cell cycle and lost in G2 phase, but it is not known when TAD structure and inter-TAD contacts are re-established after their elimination during mitosis. Here, we use multiplexed 4C-seq to study dynamic changes in chromatin organization during early G1. We find that both establishment of TADs and their compartmentalization occur during early G1, within the same time frame as establishment of the replication-timing program. Once established, this 3D organization is preserved either after withdrawal into quiescence or for the remainder of interphase including G2 phase, implying 3D structure is not sufficient to maintain replication timing. Finally, we find that developmental domains are less well compartmentalized than constitutive domains and display chromatin properties that distinguish them from early and late constitutive domains. Overall, this study uncovers a strong connection between chromatin re-organization during G1, establishment of replication timing, and its developmental control.


Assuntos
Cromatina/química , Cromatina/genética , Período de Replicação do DNA , Fase G1 , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Camundongos , Análise de Sequência de DNA/métodos
18.
Dev Biol ; 412(1): 57-70, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26900887

RESUMO

Belle (Bel), the Drosophila homolog of the yeast DEAD-box RNA helicase DED1 and human DDX3, has been shown to be required for oogenesis and female fertility. Here we report a novel role of Bel in regulating the expression of transgenes. Abrogation of Bel by mutations or RNAi induces silencing of a variety of P-element-derived transgenes. This silencing effect depends on downregulation of their RNA levels. Our genetic studies have revealed that the RNA helicase Spindle-E (Spn-E), a nuage RNA helicase that plays a crucial role in regulating RNA processing and PIWI-interacting RNA (piRNA) biogenesis in germline cells, is required for loss-of-bel-induced transgene silencing. Conversely, Bel abrogation alleviates the nuage-protein mislocalization phenotype in spn-E mutants, suggesting a competitive relationship between these two RNA helicases. Additionally, disruption of the chromatin remodeling factor Mod(mdg4) or the microRNA biogenesis enzyme Dicer-1 (Dcr-1) also alleviates the transgene-silencing phenotypes in bel mutants, suggesting the involvement of chromatin remodeling and microRNA biogenesis in loss-of-bel-induced transgene silencing. Finally we show that genetic inhibition of Bel function leads to de novo generation of piRNAs from the transgene region inserted in the genome, suggesting a potential piRNA-dependent mechanism that may mediate transgene silencing as Bel function is inhibited.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , RNA Helicases/genética , Transgenes , Animais , Inativação Gênica , Mutação
19.
Genome Res ; 24(2): 251-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24310001

RESUMO

Nucleosome occupancy plays a key role in regulating access to eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 h post-KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro-assembled nucleosomes. We demonstrate that both the predicted model and the assembled nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 h post-KSHV reactivation. We suggest a model in which loci are held in an unfavorable chromatin architecture and "spring" to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.


Assuntos
Cromatina/genética , Herpesvirus Humano 8/genética , Nucleossomos/genética , Ativação Viral/genética , Simulação por Computador , Genoma Humano , Humanos , Modelos Genéticos , Análise de Sequência de DNA
20.
Plant Cell ; 26(10): 3883-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25361955

RESUMO

The eukaryotic genome is organized into nucleosomes, the fundamental units of chromatin. The positions of nucleosomes on DNA regulate protein-DNA interactions and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in gene expression relate to changes in nucleosome position is poorly understood. We show that in nucleosome occupancy mapping experiments in maize (Zea mays), particular genomic regions are highly susceptible to variation introduced by differences in the extent to which chromatin is digested with micrococcal nuclease (MNase). We exploited this digestion-linked variation to identify protein footprints that are hypersensitive to MNase digestion, an approach we term differential nuclease sensitivity profiling (DNS-chip). Hypersensitive footprints were enriched at the 5' and 3' ends of genes, associated with gene expression levels, and significantly overlapped with conserved noncoding sequences and the binding sites of the transcription factor KNOTTED1. We also found that the tissue-specific regulation of gene expression was linked to tissue-specific hypersensitive footprints. These results reveal biochemical features of nucleosome organization that correlate with gene expression levels and colocalize with functional DNA elements. This approach to chromatin profiling should be broadly applicable to other species and should shed light on the relationships among chromatin organization, protein-DNA interactions, and genome regulation.


Assuntos
Cromatina/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Nuclease do Micrococo/metabolismo , Zea mays/genética , Sítios de Ligação/genética , Cromatina/metabolismo , Pegada de DNA/métodos , DNA de Plantas/metabolismo , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA